Nombres complexes

Passer de la forme exponentielle à la forme algébrique - Exercice 1

10 min
20
Ecrire sous forme algébrique les nombres complexes suivants :
Question 1

z1=4eiπ4z_{1} =4e^{i\frac{\pi }{4} }

Correction
Soit θ{\color{blue}{\theta}} un réel .
  • eiθ=cos(θ)+isin(θ)e^{i{\color{blue}{\theta}} } =\cos \left({\color{blue}{\theta}}\right)+i\sin \left({\color{blue}{\theta}}\right)
  • z1=4eiπ4z_{1} =4e^{i{\color{blue}{\frac{\pi }{4}}} } équivaut successivement à :
    z1=4×(cos(π4)+isin(π4))z_{1} =4\times \left(\cos \left({\color{blue}{\frac{\pi }{4}}} \right)+i\sin \left({\color{blue}{\frac{\pi }{4}}} \right)\right)
    z1=4×cos(π4)+4×isin(π4)z_{1} =4\times \cos \left(\frac{\pi }{4} \right)+4\times i\sin \left(\frac{\pi }{4} \right)
    z1=4×22+4×i×22z_{1} =4\times \frac{\sqrt{2} }{2} +4\times i\times \frac{\sqrt{2} }{2}
    z1=4×22+4×22iz_{1} =\frac{4\times \sqrt{2} }{2} +\frac{4\times \sqrt{2} }{2} i
    Ainsi :
    z1=22+22iz_{1} =2\sqrt{2} +2\sqrt{2} i

    Question 2

    z2=2eiπ3z_{2} =2e^{i\frac{\pi }{3} }

    Correction
    Soit θ{\color{blue}{\theta}} un réel .
  • eiθ=cos(θ)+isin(θ)e^{i{\color{blue}{\theta}} } =\cos \left({\color{blue}{\theta}}\right)+i\sin \left({\color{blue}{\theta}}\right)
  • z2=2eiπ3z_{2} =2e^{i{\color{blue}{\frac{\pi }{3}}} } équivaut successivement à :
    z2=2×(cos(π3)+isin(π3))z_{2} =2\times \left(\cos \left({\color{blue}{\frac{\pi }{3}}} \right)+i\sin \left({\color{blue}{\frac{\pi }{3}}}\right)\right)
    z2=2×cos(π3)+2×isin(π3)z_{2} =2\times \cos \left(\frac{\pi }{3} \right)+2\times i\sin \left(\frac{\pi }{3} \right)
    z2=2×12+2×i×32z_{2} =2\times \frac{1}{2} +2\times i\times \frac{\sqrt{3} }{2}
    Ainsi :
    z2=1+3iz_{2} =1+\sqrt{3} i

    Question 3

    z3=5eiπ2z_{3} =5e^{-i\frac{\pi }{2} }

    Correction
    Soit θ{\color{blue}{\theta}} un réel .
  • eiθ=cos(θ)+isin(θ)e^{i{\color{blue}{\theta}} } =\cos \left({\color{blue}{\theta}}\right)+i\sin \left({\color{blue}{\theta}}\right)
  • z3=5eiπ2z_{3} =5e^{-i{\color{blue}{\frac{\pi }{2} }}} équivaut successivement à :
    z3=5×(cos(π2)+isin(π2))z_{3} =5\times \left(\cos \left({\color{blue}{-\frac{\pi }{2}}} \right)+i\sin \left({\color{blue}{-\frac{\pi }{2}}} \right)\right)
    z3=5×cos(π2)+5×isin(π2)z_{3} =5\times \cos \left(-\frac{\pi }{2} \right)+5\times i\sin \left(-\frac{\pi }{2} \right)
    z3=5×0+5×i×(1)z_{3} =5\times 0+5\times i\times \left(-1\right)
    Ainsi :
    z3=5iz_{3} =-5i

    Question 4

    z4=3ei5π6z_{4} =3e^{-i\frac{5\pi }{6} }

    Correction
    Soit θ{\color{blue}{\theta}} un réel .
  • eiθ=cos(θ)+isin(θ)e^{i{\color{blue}{\theta}} } =\cos \left({\color{blue}{\theta}}\right)+i\sin \left({\color{blue}{\theta}}\right)
  • z4=3ei5π6z_{4} =3e^{-i{\color{blue}{\frac{5\pi }{6} }}} équivaut successivement à :
    z4=3×(cos(5π6)+isin(5π6))z_{4} =3\times \left(\cos \left({\color{blue}{-\frac{5\pi }{6}}} \right)+i\sin \left({\color{blue}{-\frac{5\pi }{6}}} \right)\right)
    z4=3×cos(5π6)+3×isin(5π6)z_{4} =3\times \cos \left(-\frac{5\pi }{6} \right)+3\times i\sin \left(-\frac{5\pi }{6} \right)
    z4=3×(32)+3×i(12)z_{4} =3\times \left(-\frac{\sqrt{3} }{2} \right)+3\times i\left(-\frac{1}{2} \right)
    Ainsi :
    z4=33232iz_{4} =-\frac{3\sqrt{3} }{2} -\frac{3}{2} i