Fonction logarithme népérien

Les limites avec la fonction xln(x)x\mapsto \ln \left(x\right) - Exercice 2

15 min
30
Déterminer les limites suivantes :
Question 1

limx0+ln(x)+3\mathop{\lim }\limits_{x\to 0^{+} } \ln \left(x\right)+3 que l'on peut aussi écrire limx0x>0ln(x)+3\mathop{\lim }\limits_{\begin{array}{l} {x\to 0} \\ {x>0} \end{array}} \ln \left(x\right)+3

Correction
  • limx0+ln(x)=\lim\limits_{x\to 0^{+} } \ln \left(x\right)=-\infty
  • limx0+ln(x)=limx0+3=3}\left. \begin{array}{ccc} {\lim\limits_{x\to 0^{+} }\ln \left(x\right)} & {=} & {-\infty } \\ {\lim\limits_{x\to 0^{+} } 3} & {=} & {3 } \end{array}\right\} par addition\text{\red{par addition}}
    limx0+ln(x)+3=\mathop{\lim }\limits_{x\to 0^{+} } \ln \left(x\right)+3=-\infty
    Question 2

    limx0+3ln(x)2\mathop{\lim }\limits_{x\to 0^{+} } 3\ln \left(x\right)-2

    Correction
  • limx0+ln(x)=\lim\limits_{x\to 0^{+} } \ln \left(x\right)=-\infty
  • limx0+3ln(x)=limx0+2=2}\left. \begin{array}{ccc} {\lim\limits_{x\to 0^{+} }3\ln \left(x\right)} & {=} & {-\infty } \\ {\lim\limits_{x\to 0^{+} } -2} & {=} & {-2 } \end{array}\right\} par addition\text{\red{par addition}}
    limx0+3ln(x)2=\mathop{\lim }\limits_{x\to 0^{+} } 3\ln \left(x\right)-2=-\infty
    Question 3

    limx0+5ln(x)+3x\mathop{\lim }\limits_{x\to 0^{+} } 5\ln \left(x\right)+3x

    Correction
  • limx0+ln(x)=\lim\limits_{x\to 0^{+} } \ln \left(x\right)=-\infty
  • limx0+5ln(x)=limx0+3x=0}\left. \begin{array}{ccc} {\lim\limits_{x\to 0^{+} }5\ln \left(x\right)} & {=} & {-\infty } \\ {\lim\limits_{x\to 0^{+} } 3x} & {=} & {0 } \end{array}\right\} par addition\text{\red{par addition}}
    limx0+5ln(x)+3x=\mathop{\lim }\limits_{x\to 0^{+} } 5\ln \left(x\right)+3x=-\infty
    Question 4

    limx0+2ln(x)7x+1\mathop{\lim }\limits_{x\to 0^{+} } -2\ln \left(x\right)-7x+1

    Correction
  • limx0+ln(x)=\lim\limits_{x\to 0^{+} } \ln \left(x\right)=-\infty
  • 2°)  Calculons  dans  un  second  temps  la  limite  de  2ln(x)\underline{\color{black}2°)\;Calculons\;dans\;un\;second\;temps\;la\;limite\;de\;-2\ln(x)}
    limx0+ln(x)=limx0+2=2}\left. \begin{array}{ccc} {\lim\limits_{x\to 0^{+} }\ln \left(x\right)} & {=} & {-\infty } \\ {\lim\limits_{x\to 0^{+} } -2} & {=} & {-2 } \end{array}\right\} par produit\text{\red{par produit}}
    limx0+2ln(x)=+\mathop{\lim }\limits_{x\to 0^{+} } -2\ln \left(x\right)=+\infty

    On  peut  donc  conclure  :\underline{\color{black}On\;peut\;donc\;conclure\;:}
    limx0+2ln(x)=+limx0+7x+1=1}\left. \begin{array}{ccc} {\lim\limits_{x\to 0^{+} }-2\ln \left(x\right)} & {=} & {+\infty } \\ {\lim\limits_{x\to 0^{+} } -7x+1} & {=} & {1 } \end{array}\right\} par somme\text{\red{par somme}}
    limx0+2ln(x)7x+1=+\mathop{\lim }\limits_{x\to 0^{+} } -2\ln \left(x\right)-7x+1=+\infty
    Question 5

    limx0+xln(x)4\mathop{\lim }\limits_{x\to 0^{+} } x\ln \left(x\right)-4

    Correction
  • limx0+xln(x)=0\lim\limits_{x\to 0^{+} } x\ln \left(x\right)=0
  • limx0+xln(x)=0limx0+4=4}\left. \begin{array}{ccc} {\lim\limits_{x\to 0^{+} }x\ln \left(x\right)} & {=} & {0 } \\ {\lim\limits_{x\to 0^{+} } -4} & {=} & {-4 } \end{array}\right\} par addition\text{\red{par addition}}
    limx0+xln(x)4=4\mathop{\lim }\limits_{x\to 0^{+} } x\ln \left(x\right)-4=-4
    Question 6

    limx0+xln(x)+6x+8\mathop{\lim }\limits_{x\to 0^{+} } x\ln \left(x\right)+6x+8

    Correction
  • limx0+xln(x)=0\lim\limits_{x\to 0^{+} } x\ln \left(x\right)=0
  • limx0+xln(x)=0limx0+6x+8=8}\left. \begin{array}{ccc} {\lim\limits_{x\to 0^{+} }x\ln \left(x\right)} & {=} & {0 } \\ {\lim\limits_{x\to 0^{+} } 6x+8} & {=} & {8 } \end{array}\right\} par addition\text{\red{par addition}}
    limx0+xln(x)+6x+8=8\mathop{\lim }\limits_{x\to 0^{+} } x\ln \left(x\right)+6x+8=8
    Question 7

    limx0+ln(x+1)x+2\mathop{\lim }\limits_{x\to 0^{+} } \frac{\ln \left(x+1\right)}{x} +2

    Correction
  • limx0+ln(x+1)x=1\lim\limits_{x\to 0^{+} } \frac{\ln \left(x+1\right)}{x}=1
  • limx0+ln(x+1)x=1limx0+2=2}\left. \begin{array}{ccc} {\lim\limits_{x\to 0^{+} }\frac{\ln \left(x+1\right)}{x}} & {=} & {1 } \\ {\lim\limits_{x\to 0^{+} } 2} & {=} & {2 } \end{array}\right\} par addition\text{\red{par addition}}
    limx0+ln(x+1)x+2=3\mathop{\lim }\limits_{x\to 0^{+} } \frac{\ln \left(x+1\right)}{x} +2=3
    Question 8

    limx0+xln(x)7x\mathop{\lim }\limits_{x\to 0^{+} } x\ln \left(x\right)-7x .

    Correction
  • limx0+xln(x)=0\lim\limits_{x\to 0^{+} } x\ln \left(x\right)=0
  • limx0+xln(x)=0limx0+7x=0}\left. \begin{array}{ccc} {\lim\limits_{x\to 0^{+} }x\ln \left(x\right)} & {=} & {0 } \\ {\lim\limits_{x\to 0^{+} } -7x} & {=} & {0} \end{array}\right\} par addition\text{\red{par addition}}
    limx0+xln(x)7x=0\mathop{\lim }\limits_{x\to 0^{+} } x\ln \left(x\right)-7x=0