Primitives

Changement de variables - Exercice 2

20 min
35
Question 1

Soit x[0,π6]x\in \left[0,\frac{\pi }{6}\right] . Calculer les primitives de f(x)=1(cos(x) )6f\left(x\right)=\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^6} en posant t=tan(x) t={\mathrm{tan} \left(x\right)\ } .

Correction
Soit x[0,π6]x\in \left[0,\frac{\pi }{6}\right], on a : f(x)=1(cos(x) )6f\left(x\right)=\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^6}
On pose t=tan(x) \red{t={\mathrm{tan} \left(x\right)\ }} ce qui donne dt=(1+(tan(x) )2)dxdt=(1+t2)dxdt(1+t2)=dxdt=\left(1+{\left({\mathrm{tan} \left(x\right)\ }\right)}^2\right)dx\Longrightarrow dt=\left(1+t^2\right)dx\Longrightarrow {\color{blue}{\frac{dt}{\left(1+t^2\right)}=dx}}
1(cos(x) )6dx=(1(cos(x) )2)3dx\int{\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^6}dx}=\int{{\left(\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^2}\right)}^3dx}
1(cos(x) )6dx=(1+(tan(x) )2)3dx\int{\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^6}dx}=\int{{\left(1+{\left(\red{{\mathrm{tan} \left(x\right)\ }}\right)}^2\right)}^3{\color{blue}{dx}}}
1(cos(x) )6dx=(1+t2)3×dt(1+t2)\int{\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^6}dx}=\int{{\left(1+\red{t}^2\right)}^3}\times {\color{blue}{\frac{dt}{\left(1+t^2\right)}}}
1(cos(x) )6dx=(1+t2)2dt\int{\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^6}dx}=\int{{\left(1+t^2\right)}^2}dt
1(cos(x) )6dx=(1+2t2+t4)dt\int{\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^6}dx}=\int{\left(1+2t^2+t^4\right)}dt
1(cos(x) )6dx=t+23t3+15t5+K\int{\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^6}dx}=t+\frac{2}{3}t^3+\frac{1}{5}t^5+KKRK \in \mathbb{R}
Finalement :
1(cos(x) )6dx=tan(x) +23(tan(x) )3+15(tan(x))5+K\int{\frac{1}{{\left({\mathrm{cos} \left(x\right)\ }\right)}^6}dx}={\mathrm{tan} \left(x\right)\ }+\frac{2}{3}{\left({\mathrm{tan} \left(x\right)\ }\right)}^3+\frac{1}{5}{\left({\mathrm{tan} \left(x\right)}\right)}^5+KKRK \in \mathbb{R}

Question 2

Soit t[1,+[t\in \left[-1,+\infty\right[ . Calculer les primitives de f(t)=11+t+3f\left(t\right)=\frac{1}{\sqrt{1+t}+3} en posant u=1+tu=\sqrt{1+t} .

Correction
Soit t[1,+[t\in \left[-1,+\infty\right[, on a : f(t)=11+t+3f\left(t\right)=\frac{1}{\sqrt{1+t}+3} .
On pose u=1+tu2=1+t\red{u=\sqrt{1+t}}\Longrightarrow u^2=1+t ainsi 2udu=dt{\color{blue}{2udu=dt}}
11+t+3dt=1u+32udu\int{\frac{1}{\red{\sqrt{1+t}}+3}{\color{blue}{dt}}}=\int{\frac{1}{\red{u}+3}{\color{blue}{2udu}}}
11+t+3dt=2uu+3du\int{\frac{1}{\sqrt{1+t}+3}dt}=2\int{\frac{u}{u+3}du}
11+t+3dt=2u+33u+3du\int{\frac{1}{\sqrt{1+t}+3}dt}=2\int{\frac{u+3-3}{u+3}du}
11+t+3dt=2u+3u+3du+ 23u+3du\int{\frac{1}{\sqrt{1+t}+3}dt}=2\int{\frac{u+3}{u+3}du}+\ 2\int{\frac{-3}{u+3}du}
11+t+3dt=21du61u+3du\int{\frac{1}{\sqrt{1+t}+3}dt}=2\int{1du}-6\int{\frac{1}{u+3}du}
11+t+3dt=2u6lnu+3 \int{\frac{1}{\sqrt{1+t}+3}dt}=2u-6{\mathrm{ln} \left|u+3\right|\ }
11+t+3dt=21+t6ln1+t+3 +K\int{\frac{1}{\sqrt{1+t}+3}dt}=2\sqrt{1+t}-6{\mathrm{ln} \left|\sqrt{1+t}+3\right|\ }+KKRK \in \mathbb{R}
Ainsi :
11+t+3dt=21+t6ln(1+t+3) +K\int{\frac{1}{\sqrt{1+t}+3}dt}=2\sqrt{1+t}-6{\mathrm{ln} \left(\sqrt{1+t}+3\right)\ }+KKRK \in \mathbb{R}

Question 3

Soit t[0;π3]t\in \left[0;\frac{\pi }{3}\right] . Calculer les primitives de f(t)=t21t2f\left(t\right)=\frac{t^2}{\sqrt{1-t^2}} en posant t=sin(x) t={\mathrm{sin} \left(x\right)\ } .

Correction
Soit t[0;π3]t\in \left[0;\frac{\pi }{3}\right]
f(t)dt=t21t2dt\int{f\left(t\right)}dt=\int{\frac{t^2}{\sqrt{1-t^2}}dt}
On pose : t=sin(x) \red{t={\mathrm{sin} \left(x\right)\ }} ainsi dt=cos(x)dx {\color{blue}{dt={\mathrm{cos} \left(x\right)dx\ }}}
D'où :
f(t)dt=sin 2(x)1sin 2(x)cos(x)dx \int{f\left(t\right)}dt=\int{\frac{{\sin\ }^2\left(x\right)}{\sqrt{1-{\sin\ }^2\left(x\right)}}{\mathrm{cos} \left(x\right)dx\ }}
f(t)dt=sin 2(x)cos 2(x)cos(x)dx \int{f\left(t\right)}dt=\int{\frac{{\sin\ }^2\left(x\right)}{\sqrt{{\cos\ }^2\left(x\right)}}{\mathrm{cos} \left(x\right)dx\ }}
f(t)dt=sin 2(x)cos(x) cos(x)dx \int{f\left(t\right)}dt=\int{\frac{{\sin\ }^2\left(x\right)}{\left|{\mathrm{cos} \left(x\right)\ }\right|}{\mathrm{cos} \left(x\right)dx\ }}
Comme x[0;π3] x\in \left[0;\frac{\pi }{3}\right]\ alors cos(x) >0{\mathrm{cos} \left(x\right)\ }>0, il vient alors que :
f(t)dt=sin 2(x)cos(x) cos(x)dx \int{f\left(t\right)}dt=\int{\frac{{\sin\ }^2\left(x\right)}{{\mathrm{cos} \left(x\right)\ }}{\mathrm{cos} \left(x\right)dx\ }}
f(t)dt=sin 2(x)dx\int{f\left(t\right)}dt=\int{{\sin\ }^2\left(x\right)}dx
f(t)dt=12(1cos(2x) )dx\int{f\left(t\right)}dt=\int{\frac{1}{2}\left(1-{\mathrm{cos} \left(2x\right)\ }\right)}dx
f(t)dt=12x14sin(2x) +K\int{f\left(t\right)}dt=\frac{1}{2}x-\frac{1}{4}{\mathrm{sin} \left(2x\right)\ }+KKRK \in \mathbb{R}
Or t=sin(x) t={\mathrm{sin} \left(x\right)\ } alors arcsin(t) =x{\mathrm{arcsin} \left(t\right)\ }=x, ce qui donne :

Finalement :
f(t)dt=12arcsin(t) 14sin(2arcsin(t) ) +K\int{f\left(t\right)}dt=\frac{1}{2}{\mathrm{arcsin} \left(t\right)\ }-\frac{1}{4}{\mathrm{sin} \left(2{\mathrm{arcsin} \left(t\right)\ }\right)\ }+KKRK \in \mathbb{R}

Question 4

Soit t]0;+[t\in \left]0;+\infty\right[ . Calculer les primitives de f(t)=dtetetf\left(t\right)=\frac{dt}{e^t-e^{-t}} en posant x=etx=e^t .

Correction
f(t)dt=dtetet\int{f\left(t\right)}dt=\int{\frac{dt}{e^t-e^{-t}}}
On pose x=et\red{x=e^t} ainsi dx=etdtdx=e^tdt\Longrightarrow dxet=dtdxx=dt\frac{dx}{e^t}=dt\Longrightarrow {\color{blue}{\frac{dx}{x}=dt}}
Il vient alors :
f(t)dt=dtet1et\int{f\left(t\right)}dt=\int{\frac{dt}{e^t-\frac{1}{e^t}}}
f(t)dt=dxxx1x\int{f\left(t\right)}dt=\int{\frac{\frac{dx}{x}}{x-\frac{1}{x}}}
f(t)dt=dxxx21x\int{f\left(t\right)}dt=\int{\frac{\frac{dx}{x}}{\frac{x^2-1}{x}}}
f(t)dt=dxx21\int{f\left(t\right)}dt=\int{\frac{dx}{x^2-1}}
f(t)dt=dx1x2\int{f\left(t\right)}dt=-\int{\frac{dx}{1-x^2}}
f(t)dt=12ln1+x1x +K\int{f\left(t\right)}dt=\frac{1}{2}{\mathrm{ln} \left|\frac{1+x}{1-x}\right|\ }+KKRK \in \mathbb{R}
Or x=etx=e^t ce qui nous donne :
f(t)dt=12ln1+et1et +K\int{f\left(t\right)}dt=\frac{1}{2}{\mathrm{ln} \left|\frac{1+e^t}{1-e^t}\right|\ }+KKRK \in \mathbb{R}