Primitives

A la limite du possible ! - Exercice 1

30 min
50
Patience et logique sont bien souvent les sources de la réussie.
Question 1
Soit tt un nombre réel tel que 0<t20 < t \leqslant 2.
On pose =limx0x3xttan2(t)dt\ell = \lim_{x \, \longrightarrow \, 0} \int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt.

Déterminer la valeur de \ell.

Correction
Notons par II l'intervalle ]0;2]\left] 0 \,;\, 2 \right].
Sur cet intervalle la fonction tttan2(t) t \longmapsto \dfrac{t}{\tan^2(t)} est continue, et donc la limite limx0x3xttan2(t)dt\lim_{x \, \longrightarrow \, 0} \int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt existe bien.
On a :
x3xttan2(t)dt=x3xtcos2(t)sin2(t)dt=x3xt(1sin2(t))sin2(t)dt=x3xttsin2(t))sin2(t)dt\int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt = \int_x^{3x} \dfrac{t \cos^2(t)}{\sin^2(t)} \, dt = \int_x^{3x} \dfrac{t \big( 1 - \sin^2(t) \big)}{\sin^2(t)} \, dt = \int_x^{3x} \dfrac{t - t\sin^2(t) \big)}{\sin^2(t)} \, dt
Ce qui nous donne :
x3xttan2(t)dt=x3x(tsin2(t)tsin2(t)sin2(t))dt=x3x(tsin2(t)t)dt\int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt = \int_x^{3x} \left( \dfrac{t}{\sin^2(t)} - \dfrac{ t\sin^2(t)}{\sin^2(t)} \right) \, dt = \int_x^{3x} \left( \dfrac{t}{\sin^2(t)} - t \right) \, dt
Par linéarité :
x3xttan2(t)dt=x3xtsin2(t)dtx3xtdt\int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt = \int_x^{3x} \dfrac{t}{\sin^2(t)} \, dt - \int_x^{3x} t \, dt
Avec :
x3xtdt=[t22]x3x=(3x)22x22=9x22x22=9x2x22=8x22=4x2\int_x^{3x} t \, dt = \left[ \dfrac{t^2}{2} \right]_x^{3x} = \dfrac{(3x)^2}{2} - \dfrac{x^2}{2} = \dfrac{9x^2}{2} - \dfrac{x^2}{2} = \dfrac{9x^2 - x^2}{2} = \dfrac{8x^2}{2} = 4x^2
Puis, à l'aide d'une intégration par parties, et en se souvenant que (1tan(t))=1sin2(t)\left( -\dfrac{1}{\tan(t)}\right)' = \dfrac{1}{\sin^2(t)}, on a :
x3xtsin2(t)dt=x3xt×1sin2(t)dt=[t×(1tan(t))]x3xx3x1×1tan(t)dt\int_x^{3x} \dfrac{t}{\sin^2(t)} \, dt = \int_x^{3x} t \times \dfrac{1}{\sin^2(t)} \, dt = \left[ t \times \left( -\dfrac{1}{\tan(t)}\right) \right]_x^{3x} - \int_x^{3x} 1 \times \dfrac{-1}{\tan(t)} \, dt
Soit :
x3xtsin2(t)dt=[ttan(t)]x3x+x3x1tan(t)dt=[ttan(t)]3xx+x3xcos(t)sin(t)dt\int_x^{3x} \dfrac{t}{\sin^2(t)} \, dt = \left[ -\dfrac{t}{\tan(t)} \right]_x^{3x} + \int_x^{3x} \dfrac{1}{\tan(t)} \, dt = \left[ \dfrac{t}{\tan(t)} \right]_{3x}^{x} + \int_x^{3x} \dfrac{\cos(t)}{\sin(t)} \, dt
Soit encore :
x3xtsin2(t)dt=xtan(x)3xtan(3x)+x3x(sin(t))sin(t)dt=xtan(x)3xtan(3x)+[ln(sin(t))]x3x\int_x^{3x} \dfrac{t}{\sin^2(t)} \, dt = \dfrac{x}{\tan(x)} - \dfrac{3x}{\tan(3x)} + \int_x^{3x} \dfrac{\big(\sin(t)\big)'}{\sin(t)} \, dt = \dfrac{x}{\tan(x)} - \dfrac{3x}{\tan(3x)} + \left[ \ln \left( | \sin(t)| \right) \right]_x^{3x}
Avec :
[ln(sin(t))]x3x=ln(sin(3x))ln(sin(x))=ln(sin(3x)sin(x))=ln(sin(3x)sin(x))\left[ \ln \left( | \sin(t)| \right) \right]_x^{3x} = \ln \left( | \sin(3x)| \right) - \ln \left( | \sin(x)| \right) = \ln \left( \dfrac{| \sin(3x)|}{| \sin(x)|} \right) = \ln \left( \left| \dfrac{ \sin(3x)}{\sin(x)} \right|\right)
Donc :
x3xtsin2(t)dt=xtan(x)3xtan(3x)+ln(sin(3x)sin(x))\int_x^{3x} \dfrac{t}{\sin^2(t)} \, dt = \dfrac{x}{\tan(x)} - \dfrac{3x}{\tan(3x)} + \ln \left( \left| \dfrac{ \sin(3x)}{\sin(x)} \right|\right)
Ainsi, on a :
x3xttan2(t)dt=xtan(x)3xtan(3x)+ln(sin(3x)sin(x))4x2\int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt = \dfrac{x}{\tan(x)} - \dfrac{3x}{\tan(3x)} + \ln \left( \left| \dfrac{ \sin(3x)}{\sin(x)} \right|\right) - 4x^2
D'où :
limx0x3xttan2(t)dt=limx0(xtan(x)3xtan(3x)+ln(sin(3x)sin(x))4x2)\lim_{x \, \longrightarrow \, 0} \int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt = \lim_{x \, \longrightarrow \, 0} \left( \dfrac{x}{\tan(x)} - \dfrac{3x}{\tan(3x)} + \ln \left( \left| \dfrac{ \sin(3x)}{\sin(x)} \right|\right) - 4x^2 \right)
Ce qui nous donne :
limx0x3xttan2(t)dt=limx0xtan(x)limx03xtan(3x)+limx0ln(sin(3x)sin(x))limx04x2\lim_{x \, \longrightarrow \, 0} \int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt = \lim_{x \, \longrightarrow \, 0} \dfrac{x}{\tan(x)} - \lim_{x \, \longrightarrow \, 0} \dfrac{3x}{\tan(3x)} + \lim_{x \, \longrightarrow \, 0} \ln \left( \left| \dfrac{ \sin(3x)}{\sin(x)} \right|\right) - \lim_{x \, \longrightarrow \, 0} 4x^2
Et on a, puisque x0x \, \longrightarrow \, 0, tan(x)0x\tan(x) \underset{0}{\sim} x ainsi que sin(x)0x\sin(x) \underset{0}{\sim} x :
limx0xtan(x)=limx0xx=limx011=limx01=1\bullet \,\, \lim_{x \, \longrightarrow \, 0} \dfrac{x}{\tan(x)} = \lim_{x \, \longrightarrow \, 0} \dfrac{x}{x} = \lim_{x \, \longrightarrow \, 0} \dfrac{1}{1} = \lim_{x \, \longrightarrow \, 0} 1 = 1
limx03xtan(3x)=limx03x3x=limx0xx=limx011=limx01=1\bullet \bullet \,\, \lim_{x \, \longrightarrow \, 0} \dfrac{3x}{\tan(3x)} = \lim_{x \, \longrightarrow \, 0} \dfrac{3x}{3x} = \lim_{x \, \longrightarrow \, 0} \dfrac{x}{x} = \lim_{x \, \longrightarrow \, 0} \dfrac{1}{1} = \lim_{x \, \longrightarrow \, 0} 1 = 1
limx0ln(sin(3x)sin(x))=limx0ln(3xx)=limx0ln(3)=limx0ln(3)=ln(3)\bullet \bullet \bullet \,\, \lim_{x \, \longrightarrow \, 0} \ln \left( \left| \dfrac{ \sin(3x)}{\sin(x)} \right|\right) = \lim_{x \, \longrightarrow \, 0} \ln \left( \left| \dfrac{3x}{x} \right|\right) = \lim_{x \, \longrightarrow \, 0} \ln \left( \left| 3 \right|\right) = \lim_{x \, \longrightarrow \, 0} \ln \left( 3 \right) = \ln \left( 3 \right)
limx04x2=4limx0x2=0\bullet \bullet \bullet \bullet \,\, \lim_{x \, \longrightarrow \, 0} 4x^2 = 4 \lim_{x \, \longrightarrow \, 0} x^2 = 0
Ce qui nous donne :
limx0x3xttan2(t)dt=11+ln(3)0\lim_{x \, \longrightarrow \, 0} \int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt = 1 - 1 + \ln \left( 3 \right) - 0
Finalement, on obtient :
limx0x3xttan2(t)dt=ln(3)\lim_{x \, \longrightarrow \, 0} \int_x^{3x} \dfrac{t}{\tan^2(t)} \, dt = \ln \left( 3 \right)