Dérivation et Calcul différentiel

Dérivations partielles secondes croisées - Pour débuter - Exercice 1

45 min
65
Pour une fonction multivariée (donc à plusieurs variables) la notion de dérivée partielle seconde peut prendre une forme plus subtile. En effet, pour se fixer les idée, considérons la fonction ff, dépendante des deux variables réelles xx et yy, suivante :
(x;y)R2f(x;y)=3x2y+xln(1+y2)+x1+y4(x\,;\,y) \in \mathbb{R}^2\, \longmapsto f(x\,;\,y) = 3x^2y + x\ln(1+y^2) + \dfrac{x}{1 + y^4}
Les deux deˊriveˊes partielles premieˋres{\color{blue}{\text{dérivées partielles premières}}} sont :
fx(x;y)=6xy+ln(1+y2)+11+y4{\color{blue}{\bullet \,\,\, \dfrac{\partial f}{\partial x}(x\,;\,y) }} = 6xy + \ln(1+y^2) + \dfrac{1}{1 + y^4}
fy(x;y)=3x2+x2y1+y2x4y3(1+y4)2{\color{blue}{\bullet \,\,\, \dfrac{\partial f}{\partial y}(x\,;\,y) }} = 3x^2 + x\dfrac{2y}{1+y^2} - x\dfrac{4y^3}{(1 + y^4)^2}
De suite, on en déduit les deux deˊriveˊes partielles secondes{\color{red}{\text{dérivées partielles secondes}}} qui sont :
2fx2(x;y)=6y{\color{red}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) }} = 6y
2fy2(x;y)=2x(y14y127y1023y8y6+9y4+7y21)(1+y2)2(1+y4)3{\color{red}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) }} = - \dfrac{2x (y^{14} -y^{12} - 7y^{10} - 23y^8 - y^6 + 9y^4 + 7y^2 - 1 )}{(1+y^2)^2 (1+y^4)^3}
Mais il est possible de dériver une première fois selon une des deux variables, puis de dériver cette dernière expression, mais cette fois par rapport à l'autre variable. On parle alors de deˊriveˊes partielles secondes croiseˊes{\color{green}{\text{dérivées partielles secondes croisées}}}. On a alors les deux possibilités suivantes :
2fxy(x;y)=x(fy)(x;y)=x(3x2+x2y1+y2x4y3(1+y4)2)=6x+2y1+y24y3(1+y4)2{\color{green}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) }} = \dfrac{\partial}{\partial x} \left( \dfrac{\partial f}{\partial y} \right)(x\,;\,y) = \dfrac{\partial}{\partial x} \left( 3x^2 + x\dfrac{2y}{1+y^2} - x\dfrac{4y^3}{(1 + y^4)^2}\right) = 6x + \dfrac{2y}{1+y^2} - \dfrac{4y^3}{(1 + y^4)^2}
2fyx(x;y)=y(fx)(x;y)=y(6xy+ln(1+y2)+11+y4)=6x+2y1+y24y3(1+y4)2{\color{green}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) }} = \dfrac{\partial}{\partial y} \left( \dfrac{\partial f}{\partial x} \right)(x\,;\,y) = \dfrac{\partial}{\partial y} \left( 6xy + \ln(1+y^2) + \dfrac{1}{1 + y^4}\right) = 6x + \dfrac{2y}{1+y^2} - \dfrac{4y^3}{(1+y^4)^2}
Sur cet exemple on constate l'égalité entre les deux deˊriveˊes partielles secondes croiseˊes{\color{green}{\text{dérivées partielles secondes croisées}}} :
2fxy(x;y)=2fyx(x;y){\color{green}{\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) }} = {\color{green}{\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) }}
En général, au point (x;y)(x\,;\,y), cette eˊgaliteˊ n’est pas vrai !{\color{green}{\text{cette égalité n'est pas vrai !}}}. Elle est souvent vérifiée mais ce n'est absolument pas une généralité. C'est le  theˊoreˋme de Schwarz{\color{green}{\text{ théorème de Schwarz}}} (parfois appelé  theˊoreˋme de Clairaut{\color{green}{\text{ théorème de Clairaut}}}) qui stipule les conditions de l'égalité.
Cependant, en Physique classique{\color{red}{\text{en Physique classique}}}, ces conditions mathématiques, qui permettent de permuter indifféremment les variables de dérivation, sont toujours satisfaites{\color{red}{\text{sont toujours satisfaites}}}. Ceci est lié à l'existence, donc la réalité, des grandeurs ff étudiées. Ceci est particulièrement utilisé en thermodynamique.
Question 1

Pour la fonction ci-dessous , calculer 2fxy(x;y)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) et 2fyx(x;y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y).
(x;y)R2f(x;y)=3x3y2+xsin(xy)+yex(x\,;\,y) \in \mathbb{R}^2\, \longmapsto f(x\,;\,y) = 3x^3y^2 + x\sin(xy) + ye^x

Correction
On a :
fx(x;y)=x(3x3y2+xsin(xy)+yex)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( 3x^3y^2 + x\sin(xy) + ye^x \right)
Soit :
fx(x;y)=x(3x3y2)+x(xsin(xy))+x(yex)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( 3x^3y^2 \right) + \dfrac{\partial }{\partial x}\left(x\sin(xy) \right) + \dfrac{\partial }{\partial x}\left(ye^x \right)
Soit encore :
fx(x;y)=3y2x(x3)+x(xsin(xy))+yx(ex)\dfrac{\partial f}{\partial x}(x\,;\,y) = 3y^2\dfrac{\partial }{\partial x}\left( x^3 \right) + \dfrac{\partial }{\partial x}\left(x\sin(xy) \right) + y\dfrac{\partial }{\partial x}\left(e^x \right)
Donc :
fx(x;y)=3y23x2+(sin(xy)+xycos(xy))+yex\dfrac{\partial f}{\partial x}(x\,;\,y) = 3y^23x^2 + \left(\sin(xy) + xy\cos(xy)\right) + ye^x
Finalement :
fx(x;y)=9x2y2+sin(xy)+xycos(xy)+yex{\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,y) = 9x^2y^2 + \sin(xy) + xy\cos(xy) + ye^x }}}
Puis, on a :
fy(x;y)=y(3x3y2+xsin(xy)+yex)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( 3x^3y^2 + x\sin(xy) + ye^x \right)
Soit :
fy(x;y)=y(3x3y2)+y(xsin(xy))+y(yex)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( 3x^3y^2 \right) + \dfrac{\partial }{\partial y}\left(x\sin(xy) \right) + \dfrac{\partial }{\partial y}\left(ye^x \right)
Soit encore :
fx(x;y)=3x3y(y2)+xy(sin(xy))+exy(y)\dfrac{\partial f}{\partial x}(x\,;\,y) = 3x^3\dfrac{\partial }{\partial y}\left( y^2 \right) + x\dfrac{\partial }{\partial y}\left(\sin(xy) \right) + e^x\dfrac{\partial }{\partial y}\left(y \right)
Donc :
fx(x;y)=3x32y+xxcos(xy)+ex1\dfrac{\partial f}{\partial x}(x\,;\,y) = 3x^3 2y + xx\cos(xy) + e^x 1
Finalement :
fy(x;y)=6x3y+x2cos(xy)+ex{\color{blue}{\boxed{ \dfrac{\partial f}{\partial y}(x\,;\,y) = 6x^3y + x^2\cos(xy) + e^x }}}
Ainsi, on en déduit que :
2fxy(x;y)=x(fy)(x;y)=x(6x3y+x2cos(xy)+ex)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left(\dfrac{\partial f}{\partial y}\right)(x\,;\,y) = \dfrac{\partial }{\partial x}\left( 6x^3y + x^2\cos(xy) + e^x \right)
Ce qui nous donne :
2fxy(x;y)=x(6x3y)+x(x2cos(xy))+x(ex)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( 6x^3y \right) + \dfrac{\partial }{\partial x}\left(x^2\cos(xy)\right) + \dfrac{\partial }{\partial x}\left(e^x \right)
Soit :
2fxy(x;y)=6yx(x3)+x(x2cos(xy))+x(ex)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = 6y\dfrac{\partial }{\partial x}\left( x^3 \right) + \dfrac{\partial }{\partial x}\left(x^2\cos(xy)\right) + \dfrac{\partial }{\partial x}\left(e^x \right)
D'où :
2fxy(x;y)=6y3x2+(2xcos(xy)x2ysin(xy))+ex\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = 6y3x^2 + \left(2x\cos(xy) - x^2y \sin(xy)\right) + e^x
Finalement :
2fxy(x;y)=18x2y+2xcos(xy)x2ysin(xy)+ex{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = 18x^2y + 2x\cos(xy) - x^2y \sin(xy) + e^x }}}
Puis, on a :
2fyx(x;y)=y(fx)(x;y)=y(9x2y2+sin(xy)+xycos(xy)+yex)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left(\dfrac{\partial f}{\partial x}\right)(x\,;\,y) = \dfrac{\partial }{\partial y}\left( 9x^2y^2 + \sin(xy) + xy\cos(xy) + ye^x \right)
Ce qui nous donne :
2fyx(x;y)=y(9x2y2)+y(sin(xy))+y(xycos(xy))+y(yex)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( 9x^2y^2 \right) + \dfrac{\partial }{\partial y}\left(\sin(xy) \right) + \dfrac{\partial }{\partial y}\left(xy\cos(xy)\right) + \dfrac{\partial }{\partial y}\left(y e^x \right)
Soit :
2fyx(x;y)=9x2y(y2)+y(sin(xy))+xy(ycos(xy))+exy(y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 9x^2\dfrac{\partial }{\partial y}\left( y^2 \right) + \dfrac{\partial }{\partial y}\left(\sin(xy) \right) + x\dfrac{\partial }{\partial y}\left(y\cos(xy)\right) + e^x \dfrac{\partial }{\partial y}\left(y \right)
D'où :
2fyx(x;y)=9x22y+xcos(xy)+x(cos(xy)yxsin(xy))+ex1\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 9x^22y+ x\cos(xy) + x\left(\cos(xy) - yx \sin(xy)\right) + e^x 1
Ce qui nous donne :
2fyx(x;y)=18x2y+xcos(xy)+xcos(xy)yx2sin(xy)+ex\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 18x^2 y+ x\cos(xy) + x\cos(xy) - yx^2 \sin(xy) + e^x
Finalement :
2fyx(x;y)=18x2y+2xcos(xy)x2ysin(xy)+ex{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 18x^2 y+ 2x\cos(xy) - x^2y \sin(xy) + e^x }}}
Question 2

Pour la fonction ci-dessous , calculer 2fxy(x;y)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) et 2fyx(x;y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y).
(x;y)R2f(x;y)=xyln(πy2+x4)+xsin(y)cos(2x)+exy(x\,;\,y) \in {\mathbb{R}^\star}^2 \, \longmapsto f(x\,;\,y) = xy \ln(\pi y^2 + x^4) + x\sin(y)\cos(2x) + e^{xy}

Correction
On a :
fx(x;y)=x(xyln(πy2+x4)+xsin(y)cos(2x)+exy)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( xy \ln(\pi y^2 + x^4) + x\sin(y)\cos(2x) + e^{xy}\right)
Soit :
fx(x;y)=x(xyln(πy2+x4))+x(xsin(y)cos(2x))+x(exy)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( xy \ln(\pi y^2 + x^4)\right) + \dfrac{\partial }{\partial x}\left(x\sin(y)\cos(2x) \right) + \dfrac{\partial }{\partial x}\left(e^{xy}\right)
Donc :
fx(x;y)=yx(xln(πy2+x4))+sin(y)x(xcos(2x))+x(exy)\dfrac{\partial f}{\partial x}(x\,;\,y) = y\dfrac{\partial }{\partial x}\left( x \ln(\pi y^2 + x^4)\right) + \sin(y)\dfrac{\partial }{\partial x}\left(x\cos(2x) \right) + \dfrac{\partial }{\partial x}\left(e^{xy}\right)
On en déduit que :
fx(x;y)=y(ln(πy2+x4)+x4x3πy2+x4)+sin(y)(cos(2x)x2sin(2x))+yexy\dfrac{\partial f}{\partial x}(x\,;\,y) = y\left( \ln(\pi y^2 + x^4) + x\dfrac{4x^3}{\pi y^2 + x^4}\right) + \sin(y)\left(\cos(2x) - x2\sin(2x)\right) + ye^{xy}
Soit :
fx(x;y)=yln(πy2+x4)+4x4yπy2+x4+cos(2x)sin(y)2xsin(2x)sin(y)+yexy{\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,y) = y\ln(\pi y^2 + x^4) + \dfrac{4x^4y}{\pi y^2 + x^4} + \cos(2x)\sin(y) - 2x\sin(2x)\sin(y) + ye^{xy} }}}
La dérivée partielle par rapport à yy est donnée par :
fy(x;y)=y(xyln(πy2+x4)+xsin(y)cos(2x)+exy)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( xy \ln(\pi y^2 + x^4) + x\sin(y)\cos(2x) + e^{xy}\right)
Soit :
fy(x;y)=y(xyln(πy2+x4))+y(xsin(y)cos(2x))+y(exy)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( xy \ln(\pi y^2 + x^4)\right) + \dfrac{\partial }{\partial y}\left(x\sin(y)\cos(2x) \right) + \dfrac{\partial }{\partial y}\left(e^{xy}\right)
Donc :
fy(x;y)=xy(yln(πy2+x4))+xcos(2x)y(sin(y))+y(exy)\dfrac{\partial f}{\partial y}(x\,;\,y) = x\dfrac{\partial }{\partial y}\left( y \ln(\pi y^2 + x^4)\right) + x\cos(2x) \dfrac{\partial }{\partial y}\left(\sin(y) \right) + \dfrac{\partial }{\partial y}\left(e^{xy}\right)
Ce qui nous donne :
fy(x;y)=x(ln(πy2+x4)+y2πyπy2+x4)+xcos(2x)cos(y)+xexy\dfrac{\partial f}{\partial y}(x\,;\,y) = x\left( \ln(\pi y^2 + x^4) + y \dfrac{2\pi y}{\pi y^2 + x^4} \right) + x\cos(2x) \cos(y) + xe^{xy}
Finalement :
fy(x;y)=xln(πy2+x4)+2πxy2πy2+x4+xcos(2x)cos(y)+xexy{\color{blue}{\boxed{ \dfrac{\partial f}{\partial y}(x\,;\,y) = x\ln(\pi y^2 + x^4) + \dfrac{2\pi xy^2}{\pi y^2 + x^4} + x\cos(2x)\cos(y) + xe^{xy} }}}
Puis, la première dérivée partielle seconde croisée est donnée par :
2fxy(x;y)=x(fy)(x;y)=x(xln(πy2+x4)+2πxy2πy2+x4+xcos(2x)cos(y)+xexy)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left(\dfrac{\partial f}{\partial y}\right)(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\ln(\pi y^2 + x^4) + \dfrac{2\pi xy^2}{\pi y^2 + x^4} + x\cos(2x)\cos(y) + xe^{xy} \right)
Ce qui nous donne :
2fxy(x;y)=x(xln(πy2+x4))+x(2πxy2πy2+x4)+x(xcos(2x)cos(y))+x(xexy)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\ln(\pi y^2 + x^4) \right) + \dfrac{\partial }{\partial x}\left( \dfrac{2\pi xy^2}{\pi y^2 + x^4} \right) + \dfrac{\partial }{\partial x}\left( x\cos(2x)\cos(y) \right) + \dfrac{\partial }{\partial x}\left( xe^{xy} \right)
Soit :
2fxy(x;y)=x(xln(πy2+x4))+2πy2x(xπy2+x4)+cos(y)x(xcos(2x))+x(xexy)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\ln(\pi y^2 + x^4) \right) + 2\pi y^2 \dfrac{\partial }{\partial x}\left( \dfrac{x}{\pi y^2 + x^4} \right) + \cos(y)\dfrac{\partial }{\partial x}\left( x\cos(2x) \right) + \dfrac{\partial }{\partial x}\left( xe^{xy} \right)
Ce qui nous donne donc :
2fxy(x;y)=(1ln(πy2+x4)+x4x3πy2+x4)+2πy2(1(πy2+x4)x4x3(πy2+x4)2)+cos(y)(cos(2x)x2sin(2x))+(exy+xyexy)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \left( 1\ln(\pi y^2 + x^4) + x\dfrac{4x^3}{\pi y^2 + x^4} \right) + 2\pi y^2 \left( \dfrac{1\left(\pi y^2 + x^4\right)-x4x^3}{\left(\pi y^2 + x^4\right)^2} \right) + \cos(y)\left( \cos(2x) - x2\sin(2x)\right) + \left( e^{xy} + xye^{xy} \right)
Ainsi :
2fxy(x;y)=(ln(πy2+x4)+4x4πy2+x4)+2πy2(πy2+x44x4(πy2+x4)2)+cos(y)(cos(2x)2xsin(2x))+(1+xy)exy\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \left( \ln(\pi y^2 + x^4) + \dfrac{4x^4}{\pi y^2 + x^4} \right) + 2\pi y^2 \left( \dfrac{\pi y^2 + x^4 -4x^4}{\left(\pi y^2 + x^4\right)^2} \right) + \cos(y)\left( \cos(2x) - 2x\sin(2x)\right) + \left( 1 + xy \right) e^{xy}
Finalement :
2fxy(x;y)=ln(πy2+x4)+4x4πy2+x4+2π2y46πx4y2(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+xy)exy{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{4x^4}{\pi y^2 + x^4} + \dfrac{2\pi^2 y^4 - 6\pi x^4 y^2}{\left(\pi y^2 + x^4\right)^2} + \cos(y)\left( \cos(2x) - 2x\sin(2x)\right) + \left( 1 + xy \right) e^{xy} }}}
Puis, on a l'autre dérivée partielle seconde croisée associée qui est donnée par :
2fyx(x;y)=y(fx)(x;y)=y(yln(πy2+x4)+4x4yπy2+x4+cos(2x)sin(y)2xsin(2x)sin(y)+yexy)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left(\dfrac{\partial f}{\partial x}\right)(x\,;\,y) = \dfrac{\partial }{\partial y}\left( y\ln(\pi y^2 + x^4) + \dfrac{4x^4y}{\pi y^2 + x^4} + \cos(2x)\sin(y) - 2x\sin(2x)\sin(y) + ye^{xy} \right)
Ce qui nous donne :
2fyx(x;y)=y(yln(πy2+x4))+y(4x4yπy2+x4)+y(cos(2x)sin(y))y(2xsin(2x)sin(y))+y(yexy)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( y\ln(\pi y^2 + x^4) \right) + \dfrac{\partial }{\partial y}\left( \dfrac{4x^4y}{\pi y^2 + x^4} \right) + \dfrac{\partial }{\partial y}\left( \cos(2x)\sin(y) \right) - \dfrac{\partial }{\partial y}\left( 2x\sin(2x)\sin(y) \right) + \dfrac{\partial }{\partial y}\left( ye^{xy} \right)
Soit :
2fyx(x;y)=y(yln(πy2+x4))+4x4y(yπy2+x4)+cos(2x)y(sin(y))2xsin(2x)y(sin(y))+y(yexy)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( y\ln(\pi y^2 + x^4) \right) + 4x^4\dfrac{\partial }{\partial y}\left( \dfrac{y}{\pi y^2 + x^4} \right) + \cos(2x)\dfrac{\partial }{\partial y}\left( \sin(y) \right) - 2x\sin(2x)\dfrac{\partial }{\partial y}\left( \sin(y) \right) + \dfrac{\partial }{\partial y}\left( ye^{xy} \right)
Ce qui nous donne :
2fyx(x;y)=(ln(πy2+x4)+y2πyπy2+x4)+4x4((πy2+x4)y2πy(πy2+x4)2)+cos(2x)cos(y)2xsin(2x)cos(y)+(exy+yxexy)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \left( \ln(\pi y^2 + x^4) + y \dfrac{2\pi y}{\pi y^2 + x^4}\right) + 4x^4 \left( \dfrac{\left(\pi y^2 + x^4 \right) - y 2\pi y}{\left(\pi y^2 + x^4 \right)^2} \right) + \cos(2x)\cos(y) - 2x\sin(2x)\cos(y) + \left( e^{xy} + yxe^{xy} \right)
On a alors :
2fyx(x;y)=ln(πy2+x4)+2πy2πy2+x4+4x4(x4πy2(πy2+x4)2)+cos(2x)cos(y)2xsin(2x)cos(y)+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2\pi y^2}{\pi y^2 + x^4} + 4x^4 \left( \dfrac{ x^4 - \pi y^2}{\left(\pi y^2 + x^4 \right)^2} \right) + \cos(2x)\cos(y) - 2x\sin(2x)\cos(y) + \left( 1 + yx \right)e^{xy}
Soit encore :
2fyx(x;y)=ln(πy2+x4)+2πy2(πy2+x4)(πy2+x4)2+4x84πx4y2(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2\pi y^2 \left(\pi y^2 + x^4 \right)}{\left(\pi y^2 + x^4 \right)^2} + \dfrac{ 4x^8 - 4\pi x^4y^2}{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Ce qui nous permet d'écrire que :
2fyx(x;y)=ln(πy2+x4)+2π2y4+2πx4y2+4x84πx4y2(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 + 2\pi x^4 y^2 +4x^8 - 4\pi x^4y^2}{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Soit :
2fyx(x;y)=ln(πy2+x4)+2π2y42πx4y2+4x8(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 2\pi x^4 y^2 +4x^8 }{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Par jeux d'écriture, on trouve que :
2fyx(x;y)=ln(πy2+x4)+2π2y42πx4y24x4πy2+4x4πy2+4x8(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 2\pi x^4 y^2 - 4x^4\pi y^2 + 4x^4\pi y^2 + 4x^8 }{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Donc :
2fyx(x;y)=ln(πy2+x4)+2π2y42πx4y24πx4y2+4x4(πy2+x4)(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 2\pi x^4 y^2 - 4\pi x^4 y^2 + 4x^4 \left(\pi y^2 + x^4\right) }{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
On en déduit que :
2fyx(x;y)=ln(πy2+x4)+2π2y46πx4y2+4x4(πy2+x4)(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 6\pi x^4 y^2 + 4x^4 \left(\pi y^2 + x^4\right) }{\left(\pi y^2 + x^4 \right)^2} + \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
On a donc :
2fyx(x;y)=ln(πy2+x4)+2π2y46πx4y2(πy2+x4)2+4x4(πy2+x4)(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 6\pi x^4 y^2 }{\left(\pi y^2 + x^4 \right)^2} + \dfrac{4x^4 \left(\pi y^2 + x^4\right) }{\left(\pi y^2 + x^4 \right)^2}+ \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
En simplifiant par πy2+x40\pi y^2 + x^4 \neq 0 :
2fyx(x;y)=ln(πy2+x4)+2π2y46πx4y2(πy2+x4)2+4x4πy2+x4+cos(y)(cos(2x)2xsin(2x))+(1+yx)exy\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{2 \pi^2 y^4 - 6\pi x^4 y^2 }{\left(\pi y^2 + x^4 \right)^2} + \dfrac{4x^4}{\pi y^2 + x^4 }+ \cos(y) \left(\cos(2x) - 2x\sin(2x)\right) + \left( 1 + yx \right)e^{xy}
Finalement, on a :
2fyx(x;y)=ln(πy2+x4)+4x4πy2+x4+2π2y46πx4y2(πy2+x4)2+cos(y)(cos(2x)2xsin(2x))+(1+xy)exy{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \ln(\pi y^2 + x^4) + \dfrac{4x^4}{\pi y^2 + x^4} + \dfrac{2\pi^2 y^4 - 6\pi x^4 y^2}{\left(\pi y^2 + x^4\right)^2} + \cos(y)\left( \cos(2x) - 2x\sin(2x)\right) + \left( 1 + xy \right) e^{xy} }}}
Question 3

Pour la fonction ci-dessous , calculer 2fxy(x;y)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) et 2fyx(x;y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y).
(x;y)R2f(x;y)=xcos(xy)+ysinh(x)+xcosh(y)(x\,;\,y) \in \mathbb{R}^2 \, \longmapsto f(x\,;\,y) = x\cos(xy) + y\sinh(x) + x\cosh(y)

Correction
On a :
fx(x;y)=x(xcos(xy)+ysinh(x)+xcosh(y))\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\cos(xy) + y\sinh(x) + x\cosh(y)\right)
Soit :
fx(x;y)=x(xcos(xy))+x(ysinh(x))+x(xcosh(y))\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\cos(xy)\right) + \dfrac{\partial }{\partial x}\left(y\sinh(x) \right) + \dfrac{\partial }{\partial x}\left(x\cosh(y)\right)
Donc :
fx(x;y)=x(xcos(xy))+yx(sinh(x))+cosh(y)x(x)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( x\cos(xy)\right) + y\dfrac{\partial }{\partial x}\left(\sinh(x) \right) + \cosh(y)\dfrac{\partial }{\partial x}\left(x\right)
D'où :
fx(x;y)=(cos(xy)xysin(xy))+ycosh(x)+cosh(y)1\dfrac{\partial f}{\partial x}(x\,;\,y) = \left( \cos(xy) - xy\sin(xy)\right) + y\cosh(x) + \cosh(y)1
Finalement :
fx(x;y)=cos(xy)xysin(xy)+ycosh(x)+cosh(y){\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,y) = \cos(xy) - xy\sin(xy) + y\cosh(x) + \cosh(y) }}}
Puis, on a :
fy(x;y)=y(xcos(xy)+ysinh(x)+xcosh(y))\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( x\cos(xy) + y\sinh(x) + x\cosh(y)\right)
Soit :
fy(x;y)=y(xcos(xy))+y(ysinh(x))+y(xcosh(y))\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( x\cos(xy)\right) + \dfrac{\partial }{\partial y}\left(y\sinh(x) \right) + \dfrac{\partial }{\partial y}\left(x\cosh(y)\right)
Donc :
fy(x;y)=xy(cos(xy))+sinh(x)y(y)+xy(cosh(y))\dfrac{\partial f}{\partial y}(x\,;\,y) = x\dfrac{\partial }{\partial y}\left( \cos(xy)\right) + \sinh(x)\dfrac{\partial }{\partial y}\left(y\right) + x\dfrac{\partial }{\partial y}\left(\cosh(y)\right)
Ce qui nous donne :
fy(x;y)=xxsin(xy)+sinh(x)1+xsinh(y)\dfrac{\partial f}{\partial y}(x\,;\,y) = -xx\sin(xy) + \sinh(x)1 + x\sinh(y)
Finalement :
fy(x;y)=x2sin(xy)+sinh(x)+xsinh(y){\color{blue}{\boxed{ \dfrac{\partial f}{\partial y}(x\,;\,y) = -x^2\sin(xy) + \sinh(x) + x\sinh(y) }}}
Donc, la première dérivée partielle seconde croisée est donnée par :
2fxy(x;y)=x(fy)(x;y)=x(x2sin(xy)+sinh(x)+xsinh(y))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left(\dfrac{\partial f}{\partial y}\right)(x\,;\,y) = \dfrac{\partial }{\partial x}\left( -x^2\sin(xy) + \sinh(x) + x\sinh(y) \right)
Ce qui nous donne :
2fxy(x;y)=x(x2sin(xy))+x(sinh(x))+x(xsinh(y))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x}\left( -x^2\sin(xy) \right) + \dfrac{\partial }{\partial x}\left( \sinh(x) \right) + \dfrac{\partial }{\partial x}\left( x\sinh(y) \right)
Soit :
2fxy(x;y)=x(x2sin(xy))+x(sinh(x))+sinh(y)x(x)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = - \dfrac{\partial }{\partial x}\left( x^2\sin(xy) \right) + \dfrac{\partial }{\partial x}\left( \sinh(x) \right) + \sinh(y)\dfrac{\partial }{\partial x}\left( x \right)
Ainsi :
2fxy(x;y)=(2xsin(xy)+x2ycos(xy))+cosh(x)+sinh(y)1\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = - \left( 2x\sin(xy) + x^2y\cos(xy)\right) + \cosh(x) + \sinh(y)1
Finalement :
2fxy(x;y)=cosh(x)+sinh(y)2xsin(xy)x2ycos(xy){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \cosh(x) + \sinh(y) - 2x\sin(xy) - x^2y\cos(xy) }}}
Puis, la deuxième dérivée partielle seconde croisée est donnée par :
2fyx(x;y)=y(fx)(x;y)=y(cos(xy)xysin(xy)+ycosh(x)+cosh(y))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left(\dfrac{\partial f}{\partial x}\right)(x\,;\,y) = \dfrac{\partial }{\partial y}\left( \cos(xy) - xy\sin(xy) + y\cosh(x) + \cosh(y) \right)
Ce qui nous donne :
2fyx(x;y)=y(cos(xy))y(xysin(xy))+y(ycosh(x))+y(cosh(y))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( \cos(xy) \right) - \dfrac{\partial }{\partial y}\left( xy\sin(xy) \right) + \dfrac{\partial }{\partial y}\left( y\cosh(x) \right) + \dfrac{\partial }{\partial y}\left( \cosh(y) \right)
Soit :
2fyx(x;y)=y(cos(xy))xy(ysin(xy))+cosh(x)y(y)+y(cosh(y))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y}\left( \cos(xy) \right) - x\dfrac{\partial }{\partial y}\left( y\sin(xy) \right) + \cosh(x)\dfrac{\partial }{\partial y}\left( y \right) + \dfrac{\partial }{\partial y}\left( \cosh(y) \right)
Ce qui nous donne :
2fyx(x;y)=xsin(xy)x(sin(xy)+yxcos(xy))+cosh(x)1+sinh(y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = -x\sin(xy) - x\left( \sin(xy) + yx\cos(xy)\right) + \cosh(x)1 + \sinh(y)
Soit encore :
2fyx(x;y)=2xsin(xy)x2ycos(xy)+cosh(x)+sinh(y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = -2x\sin(xy) - x^2 y\cos(xy) + \cosh(x) + \sinh(y)
Finalement :
2fyx(x;y)=cosh(x)+sinh(y)2xsin(xy)x2ycos(xy){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \cosh(x) + \sinh(y) - 2x\sin(xy) - x^2y\cos(xy) }}}
Question 4

(x;y)R2f(x;y)=ln(1+sinh(x)cosh(2y))(x\,;\,y) \in \mathbb{R}^2 \, \longmapsto f(x\,;\,y) = \ln\left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right)

Correction
On a :
fx(x;y)=x(ln(1+sinh(x)cosh(2y)))=x(1+sinh(x)cosh(2y))1+sinh(x)cosh(2y)=x(sinh(x)cosh(2y))cosh(2y)cosh(2y)+sinh(x)cosh(2y)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial}{\partial x} \left( \ln\left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right) \right) = \dfrac{\dfrac{\partial}{\partial x} \left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right) }{ 1 + \dfrac{\sinh(x)}{\cosh(2y)}} = \dfrac{\dfrac{\partial}{\partial x} \left( \dfrac{\sinh(x)}{\cosh(2y)}\right) }{ \dfrac{\cosh(2y)}{\cosh(2y)} + \dfrac{\sinh(x)}{\cosh(2y)}}
Soit encore, puisque yR, cosh(2y)0\forall y \in \mathbb{R}, \,\ \cosh(2y) \neq 0 :
fx(x;y)=1cosh(2y)x(sinh(x))cosh(2y)+sinh(x)cosh(2y)=1cosh(2y)cosh(x)cosh(2y)+sinh(x)cosh(2y)=cosh(x)cosh(2y)+sinh(x)1\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\dfrac{1}{\cosh(2y)} \dfrac{\partial }{\partial x}\left( \sinh(x) \right) }{ \dfrac{\cosh(2y)+\sinh(x)}{\cosh(2y)}} = \dfrac{\dfrac{1}{\cosh(2y)} \cosh(x) }{ \dfrac{\cosh(2y)+\sinh(x)}{\cosh(2y)}} = \dfrac{ \cosh(x) }{ \dfrac{\cosh(2y)+\sinh(x)}{1}}
Ce qui nous donne au final :
fx(x;y)=cosh(x)cosh(2y)+sinh(x){\color{blue}{\boxed{\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\cosh(x)}{ \cosh(2y)+\sinh(x)} }}}
Puis, on a également :
fy(x;y)=y(ln(1+sinh(x)cosh(2y)))=y(1+sinh(x)cosh(2y))1+sinh(x)cosh(2y)=y(sinh(x)cosh(2y))cosh(2y)cosh(2y)+sinh(x)cosh(2y)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial}{\partial y} \left( \ln\left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right) \right) = \dfrac{\dfrac{\partial}{\partial y} \left( 1 + \dfrac{\sinh(x)}{\cosh(2y)}\right) }{ 1 + \dfrac{\sinh(x)}{\cosh(2y)}} = \dfrac{\dfrac{\partial}{\partial y} \left( \dfrac{\sinh(x)}{\cosh(2y)}\right) }{ \dfrac{\cosh(2y)}{\cosh(2y)} + \dfrac{\sinh(x)}{\cosh(2y)}}
Soit :
fy(x;y)=sinh(x)y(1cosh(2y))cosh(2y)cosh(2y)+sinh(x)cosh(2y)=sinh(x)(2sinh(2y)cosh2(2y))cosh(2y)+sinh(x)cosh(2y)=2sinh(x)sinh(2y)cosh2(2y)cosh(2y)+sinh(x)cosh(2y)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\sinh(x)\dfrac{\partial}{\partial y} \left( \dfrac{1}{\cosh(2y)}\right) }{ \dfrac{\cosh(2y)}{\cosh(2y)} + \dfrac{\sinh(x)}{\cosh(2y)}} = \dfrac{\sinh(x) \left( \dfrac{-2\sinh(2y)}{\cosh^2(2y)} \right) }{\dfrac{\cosh(2y) + \sinh(x)}{\cosh(2y)}} = - \dfrac{ \dfrac{2\sinh(x)\sinh(2y)}{\cosh^2(2y)} }{\dfrac{\cosh(2y) + \sinh(x)}{\cosh(2y)}}
Soit encore, puisque yR, cosh(2y)0\forall y \in \mathbb{R}, \,\ \cosh(2y) \neq 0 :
fy(x;y)=2sinh(x)sinh(2y)cosh(2y)cosh(2y)+sinh(x)1=2sinh(x)sinh(2y)cosh(2y)cosh(2y)+sinh(x)\dfrac{\partial f}{\partial y}(x\,;\,y) = - \dfrac{ \dfrac{2\sinh(x)\sinh(2y)}{\cosh(2y)} }{\dfrac{\cosh(2y) + \sinh(x)}{1}} = - \dfrac{ \dfrac{2\sinh(x)\sinh(2y)}{\cosh(2y)} }{\cosh(2y) + \sinh(x)}
Finalement :
fy(x;y)=2sinh(x)sinh(2y)cosh(2y)(cosh(2y)+sinh(x)){\color{blue}{\boxed{\dfrac{\partial f}{\partial y}(x\,;\,y) = -\dfrac{2\sinh(x)\sinh(2y)}{\cosh(2y) \left( \cosh(2y) + \sinh(x) \right)} }}}
Puis, la première dérivée partielle croisée seconde est donnée par l'expression suivante :
2fxy(x;y)=x(fy)(x;y)=x(2sinh(x)sinh(2y)cosh(2y)(cosh(2y)+sinh(x)))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial y}\right) (x\,;\,y) = \dfrac{\partial }{\partial x} \left( -\dfrac{2\sinh(x)\sinh(2y)}{\cosh(2y) \left( \cosh(2y) + \sinh(x) \right)}\right)
Soit :
2fxy(x;y)=2sinh(2y)cosh(2y)x(sinh(x)cosh(2y)+sinh(x))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\dfrac{\sinh(2y)}{\cosh(2y) } \dfrac{\partial }{\partial x} \left( \dfrac{\sinh(x)}{\cosh(2y) + \sinh(x)}\right)
Soit encore :
2fxy(x;y)=2tanh(2y)(cosh(x)(cosh(2y)+sinh(x))sinh(x)cosh(x)(cosh(2y)+sinh(x))2)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\tanh(2y)\left( \dfrac{\cosh(x)\left( \cosh(2y) + \sinh(x) \right) - \sinh(x)\cosh(x)}{\left( \cosh(2y) + \sinh(x) \right)^2}\right)
En développant :
2fxy(x;y)=2tanh(2y)(cosh(x)cosh(2y)+sinh(x)cosh(x)sinh(x)cosh(x)(cosh(2y)+sinh(x))2)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\tanh(2y)\left( \dfrac{\cosh(x)\cosh(2y) + \sinh(x)\cosh(x) - \sinh(x)\cosh(x)}{\left( \cosh(2y) + \sinh(x) \right)^2}\right)
D'où :
2fxy(x;y)=2tanh(2y)(cosh(x)cosh(2y)(cosh(2y)+sinh(x))2)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\tanh(2y)\left( \dfrac{\cosh(x)\cosh(2y) }{\left( \cosh(2y) + \sinh(x) \right)^2}\right)
Ainsi :
2fxy(x;y)=2sinh(2y)cosh(2y)cosh(x)cosh(2y)(cosh(2y)+sinh(x))2\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -2\dfrac{\sinh(2y)}{\cosh(2y)} \dfrac{\cosh(x)\cosh(2y) }{\left( \cosh(2y) + \sinh(x) \right)^2}
Finalement :
2fxy(x;y)=2cosh(x)sinh(2y)(cosh(2y)+sinh(x))2{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = -\dfrac{2\cosh(x)\sinh(2y)}{\left( \cosh(2y) + \sinh(x) \right)^2} }}}
Enfin, la deuxième dérivée partielle croisée seconde est donnée par l'expression suivante :
2fyx(x;y)=y(fx)(x;y)=y(cosh(x)cosh(2y)+sinh(x))=cosh(x)y(1cosh(2y)+sinh(x))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial x}\right) (x\,;\,y) = \dfrac{\partial }{\partial y} \left( \dfrac{\cosh(x)}{ \cosh(2y)+\sinh(x)} \right) = \cosh(x)\dfrac{\partial }{\partial y} \left( \dfrac{1}{ \cosh(2y)+\sinh(x)} \right)
Soit :
2fyx(x;y)=cosh(x)y(cosh(2y)+sinh(x))(cosh(2y)+sinh(x))2\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = - \cosh(x)\dfrac{\dfrac{\partial }{\partial y} \left( \cosh(2y)+\sinh(x) \right)}{ \left(\cosh(2y)+\sinh(x)\right)^2}
Soit encore :
2fyx(x;y)=cosh(x)y(cosh(2y))(cosh(2y)+sinh(x))2\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = - \cosh(x)\dfrac{\dfrac{\partial }{\partial y} \left( \cosh(2y) \right)}{ \left(\cosh(2y)+\sinh(x)\right)^2}
Ainsi, on obtient :
2fyx(x;y)=cosh(x)2sinh(2y)(cosh(2y)+sinh(x))2\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = - \cosh(x)\dfrac{2\sinh(2y)}{ \left(\cosh(2y)+\sinh(x)\right)^2}
Finalement :
2fyx(x;y)=2cosh(x)sinh(2y)(cosh(2y)+sinh(x))2{\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = -\dfrac{2\cosh(x)\sinh(2y)}{\left( \cosh(2y) + \sinh(x) \right)^2} }}}