Dérivation et Calcul différentiel

Dérivations partielles secondes croisées - Pour aller plus loin - Exercice 1

1 h
90
Pour une fonction multivariée (donc à plusieurs variables) la notion de dérivée partielle seconde peut prendre une forme plus subtile. En effet, pour se fixer les idée, considérons la fonction ff, dépendante des deux variables réelles xx et yy, suivante :
(x;y)R2f(x;y)=3x2y+xln(1+y2)+x1+y4(x\,;\,y) \in \mathbb{R}^2\, \longmapsto f(x\,;\,y) = 3x^2y + x\ln(1+y^2) + \dfrac{x}{1 + y^4}
Les deux deˊriveˊes partielles premieˋres{\color{blue}{\text{dérivées partielles premières}}} sont :
fx(x;y)=6xy+ln(1+y2)+11+y4{\color{blue}{\bullet \,\,\, \dfrac{\partial f}{\partial x}(x\,;\,y) }} = 6xy + \ln(1+y^2) + \dfrac{1}{1 + y^4}
fy(x;y)=3x2+x2y1+y2x4y3(1+y4)2{\color{blue}{\bullet \,\,\, \dfrac{\partial f}{\partial y}(x\,;\,y) }} = 3x^2 + x\dfrac{2y}{1+y^2} - x\dfrac{4y^3}{(1 + y^4)^2}
De suite, on en déduit les deux deˊriveˊes partielles secondes{\color{red}{\text{dérivées partielles secondes}}} qui sont :
2fx2(x;y)=6y{\color{red}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) }} = 6y
2fy2(x;y)=2x(y14y127y1023y8y6+9y4+7y21)(1+y2)2(1+y4)3{\color{red}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) }} = - \dfrac{2x (y^{14} -y^{12} - 7y^{10} - 23y^8 - y^6 + 9y^4 + 7y^2 - 1 )}{(1+y^2)^2 (1+y^4)^3}
Mais il est possible de dériver une première fois selon une des deux variables, puis de dériver cette dernière expression, mais cette fois par rapport à l'autre variable. On parle alors de deˊriveˊes partielles secondes croiseˊes{\color{green}{\text{dérivées partielles secondes croisées}}}. On a alors les deux possibilités suivantes :
2fxy(x;y)=x(fy)(x;y)=x(3x2+x2y1+y2x4y3(1+y4)2)=6x+2y1+y24y3(1+y4)2{\color{green}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) }} = \dfrac{\partial}{\partial x} \left( \dfrac{\partial f}{\partial y} \right)(x\,;\,y) = \dfrac{\partial}{\partial x} \left( 3x^2 + x\dfrac{2y}{1+y^2} - x\dfrac{4y^3}{(1 + y^4)^2}\right) = 6x + \dfrac{2y}{1+y^2} - \dfrac{4y^3}{(1 + y^4)^2}
2fyx(x;y)=y(fx)(x;y)=y(6xy+ln(1+y2)+11+y4)=6x+2y1+y24y3(1+y4)2{\color{green}{\bullet \bullet \,\,\, \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) }} = \dfrac{\partial}{\partial y} \left( \dfrac{\partial f}{\partial x} \right)(x\,;\,y) = \dfrac{\partial}{\partial y} \left( 6xy + \ln(1+y^2) + \dfrac{1}{1 + y^4}\right) = 6x + \dfrac{2y}{1+y^2} - \dfrac{4y^3}{(1+y^4)^2}
Sur cet exemple on constate l'égalité entre les deux deˊriveˊes partielles secondes croiseˊes{\color{green}{\text{dérivées partielles secondes croisées}}} :
2fxy(x;y)=2fyx(x;y){\color{green}{\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) }} = {\color{green}{\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) }}
En général, au point (x;y)(x\,;\,y), cette eˊgaliteˊ n’est pas vrai !{\color{green}{\text{cette égalité n'est pas vrai !}}}. Elle est souvent vérifiée mais ce n'est absolument pas une généralité. C'est le  theˊoreˋme de Schwarz{\color{green}{\text{ théorème de Schwarz}}} (parfois appelé  theˊoreˋme de Clairaut{\color{green}{\text{ théorème de Clairaut}}}) qui stipule les conditions de l'égalité.
Cependant, en Physique classique{\color{red}{\text{en Physique classique}}}, ces conditions mathématiques, qui permettent de permuter indifféremment les variables de dérivation, sont toujours satisfaites{\color{red}{\text{sont toujours satisfaites}}}. Ceci est lié à l'existence, donc la réalité, des grandeurs ff étudiées. Ceci est particulièrement utilisé en thermodynamique.
Question 1

Pour la fonction ff proposée ci-dessous, déterminer les dérivées partielles premières, secondes et secondes croisées. Puis, vous écrirez l'expression de la différentielle dfdf.
(x;y)R2f(x;y)=3x1+y2+11+xy2(x\,;\,y) \in \mathbb{R}^2\, \longmapsto f(x\,;\,y) = 3x\sqrt{1+y^2} + \dfrac{1}{1+xy^2}

Correction
On a la dérivée partielle première par rapport à xx suivante :
fx(x;y)=x(3x1+y2+11+xy2)=1+y2x(3x)+x(11+xy2)\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( 3x\sqrt{1+y^2} + \dfrac{1}{1+xy^2} \right) = \sqrt{1+y^2} \,\, \dfrac{\partial }{\partial x} (3x) + \dfrac{\partial }{\partial x} \left( \dfrac{1}{1+xy^2} \right)
Ce qui nous donne :
fx(x;y)=31+y2+x(1+xy2)(1+xy2)2=31+y2x(xy2)(1+xy2)2=31+y2y2x(x)(1+xy2)2\dfrac{\partial f}{\partial x}(x\,;\,y) = 3\sqrt{1+y^2} + \dfrac{-\dfrac{\partial }{\partial x} \left(1+xy^2\right)}{\left(1+xy^2\right)^2} = 3\sqrt{1+y^2} - \dfrac{\dfrac{\partial }{\partial x} \left(xy^2\right)}{\left(1+xy^2\right)^2} = 3\sqrt{1+y^2} - \dfrac{y^2\dfrac{\partial }{\partial x} \left(x\right)}{\left(1+xy^2\right)^2}
Finalement, avec x(x)=1\dfrac{\partial }{\partial x} \left(x\right) = 1, on obtient :
fx(x;y)=31+y2y2(1+xy2)2{\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,y) = 3\sqrt{1+y^2} - \dfrac{y^2}{\left(1+xy^2\right)^2} }}}
Puis, on a la dérivée partielle première par rapport à yy suivante :
fy(x;y)=y(3x1+y2+11+xy2)=3xy(1+y2)+y(11+xy2)\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( 3x\sqrt{1+y^2} + \dfrac{1}{1+xy^2} \right) = 3x \dfrac{\partial }{\partial y} \left(\sqrt{1+y^2}\right) + \dfrac{\partial }{\partial y} \left( \dfrac{1}{1+xy^2} \right)
Ce qui nous donne :
fy(x;y)=3xy(1+y2)21+y2+y(1+xy2)(1+xy2)2=3xy(y2)21+y2y(xy2)(1+xy2)2=3xy(y2)21+y2xy(y2)(1+xy2)2\dfrac{\partial f}{\partial y}(x\,;\,y) = 3x \dfrac{\dfrac{\partial }{\partial y} \left(1+y^2\right)}{2\sqrt{1+y^2}} + \dfrac{ -\dfrac{\partial }{\partial y} \left( 1+xy^2 \right)}{\left(1+xy^2\right)^2} = 3x \dfrac{\dfrac{\partial }{\partial y} \left(y^2\right)}{2\sqrt{1+y^2}} - \dfrac{ \dfrac{\partial }{\partial y} \left(xy^2 \right)}{\left(1+xy^2\right)^2} = 3x \dfrac{\dfrac{\partial }{\partial y} \left(y^2\right)}{2\sqrt{1+y^2}} - \dfrac{ x\dfrac{\partial }{\partial y} \left(y^2 \right)}{\left(1+xy^2\right)^2}
Soit :
fy(x;y)=3x2y21+y2x2y(1+xy2)2\dfrac{\partial f}{\partial y}(x\,;\,y) = 3x \dfrac{2y}{2\sqrt{1+y^2}} - \dfrac{ x2y}{\left(1+xy^2\right)^2}
Finalement, on obtient :
fy(x;y)=3xy1+y22xy(1+xy2)2{\color{blue}{\boxed{ \dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{3xy}{\sqrt{1+y^2}} - \dfrac{2xy}{\left(1+xy^2\right)^2} }}}
On a la dérivée partielle seconde par rapport à xx suivante :
2fx2(x;y)=x(fx)(x;y)=x(31+y2y2(1+xy2)2)=y2x(1(1+xy2)2)\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = \dfrac{\partial }{\partial x}\left(\dfrac{\partial f}{\partial x} \right) (x\,;\,y) = \dfrac{\partial }{\partial x}\left( 3\sqrt{1+y^2} - \dfrac{y^2}{\left(1+xy^2\right)^2} \right) = - y^2\dfrac{\partial }{\partial x}\left( \dfrac{1}{\left(1+xy^2\right)^2} \right)
Soit :
2fx2(x;y)=y2x((1+xy2)2)(1+xy2)4=y22(1+xy2)x(1+xy2)(1+xy2)4=y22(1+xy2)y2x(x)(1+xy2)4\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = - y^2 \dfrac{-\dfrac{\partial }{\partial x}\left( \left(1+xy^2\right)^2 \right)}{\left(1+xy^2\right)^4} = y^2 \dfrac{2\left(1+xy^2\right)\dfrac{\partial }{\partial x}\left( 1+xy^2 \right)}{\left(1+xy^2\right)^4} = y^2 \dfrac{2\left(1+xy^2\right)y^2\dfrac{\partial }{\partial x}\left( x \right)}{\left(1+xy^2\right)^4}
Or, on a x(x)=1\dfrac{\partial }{\partial x}\left( x \right) = 1. Donc :
2fx2(x;y)=y22(1+xy2)y2(1+xy2)4=y22y2(1+xy2)3\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = y^2 \dfrac{2\left(1+xy^2\right)y^2}{\left(1+xy^2\right)^4} = y^2 \dfrac{2y^2}{\left(1+xy^2\right)^3}
Finalement :
2fx2(x;y)=2y4(1+xy2)3{\color{red}{\boxed{\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = \dfrac{2 y^4}{\left(1+xy^2\right)^3} }}}
On a la dérivée partielle seconde par rapport à yy suivante :
2fy2(x;y)=y(fy)(x;y)=y(3xy1+y22xy(1+xy2)2)=3xy(y1+y2)2xy(y(1+xy2)2)\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = \dfrac{\partial }{\partial y}\left(\dfrac{\partial f}{\partial y} \right) (x\,;\,y) = \dfrac{\partial }{\partial y}\left( \dfrac{3xy}{\sqrt{1+y^2}} - \dfrac{2xy}{\left(1+xy^2\right)^2} \right) = 3x\dfrac{\partial }{\partial y}\left( \dfrac{y}{\sqrt{1+y^2}}\right) - 2x \dfrac{\partial }{\partial y}\left( \dfrac{y}{\left(1+xy^2\right)^2}\right)
Soit :
2fy2(x;y)=3x(y1+y2y(1+y2)1+y22)2x(y(1+xy2)2y((1+xy2)2)((1+xy2)2)2)\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = 3x\left( \dfrac{y'\sqrt{1+y^2}-y\left( \sqrt{1+y^2} \right)'}{\sqrt{1+y^2}^2}\right) - 2x \left( \dfrac{y'\left(1+xy^2\right)^2-y\left(\left(1+xy^2\right)^2\right)'}{\left(\left(1+xy^2\right)^2\right)^2}\right)
Soit encore :
2fy2(x;y)=3x(1+y2y2y21+y21+y2)2x(y(1+xy2)2y2(1+xy2)(1+xy2)(1+xy2)4)\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = 3x\left( \dfrac{\sqrt{1+y^2}-y\dfrac{2y}{2\sqrt{1+y^2}}}{1+y^2}\right) - 2x \left( \dfrac{y'\left(1+xy^2\right)^2-y 2\left(1+xy^2\right)\left(1+xy^2\right)'}{\left(1+xy^2\right)^4}\right)
Ce qui nous donne :
2fy2(x;y)=3x(1+y2y21+y21+y2)2x((1+xy2)2y2(1+xy2)2xy(1+xy2)4)\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = 3x\left( \dfrac{\sqrt{1+y^2}-\dfrac{y^2}{\sqrt{1+y^2}}}{1+y^2}\right) - 2x \left( \dfrac{\left(1+xy^2\right)^2-y 2\left(1+xy^2\right)2xy}{\left(1+xy^2\right)^4}\right)
En simplifiant, dans le second terme, par le terme non nul 1+xy21+xy^2 on trouve :
2fy2(x;y)=3x(1+y2y2(1+y2)1+y2)2x(1+xy24xy2(1+xy2)3)\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = 3x\left( \dfrac{1+y^2-y^2}{\left(1+y^2\right)\sqrt{1+y^2}}\right) - 2x \left( \dfrac{1+xy^2-4xy^2}{\left(1+xy^2\right)^3}\right)
En simplifiant :
2fy2(x;y)=3x1(1+y2)322x(13xy2(1+xy2)3)\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = 3x \dfrac{1}{\left(1+y^2\right)^\frac{3}{2}} - 2x \left( \dfrac{1-3xy^2}{\left(1+xy^2\right)^3}\right)
Ce qui finalement nous donne :
2fy2(x;y)=3x(1+y2)322x(13xy2(1+xy2)3){\color{red}{\boxed{\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = \dfrac{3x}{\left(1+y^2\right)^\frac{3}{2}} - 2x \left( \dfrac{1-3xy^2}{\left(1+xy^2\right)^3}\right) }}}
Puis, on a la première dérivée partielle seconde croisée suivante :
2fxy(x;y)=x(fy)(x;y)=x(3xy1+y22xy(1+xy2)2)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial y} \right)(x\,;\,y) = \dfrac{\partial }{\partial x} \left( \dfrac{3xy}{\sqrt{1+y^2}} - \dfrac{2xy}{\left(1+xy^2\right)^2} \right)
Soit :
2fxy(x;y)=x(3xy1+y2)x(2xy(1+xy2)2)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( \dfrac{3xy}{\sqrt{1+y^2}} \right) - \dfrac{\partial }{\partial x} \left( \dfrac{2xy}{\left(1+xy^2\right)^2} \right)
Soit encore :
2fxy(x;y)=3y1+y2x(x)2yx(x(1+xy2)2)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}}\dfrac{\partial }{\partial x} \left( x \right) - 2y \dfrac{\partial }{\partial x} \left( \dfrac{x}{\left(1+xy^2\right)^2} \right)
Ce qui nous donne :
2fxy(x;y)=3y1+y22yx(1+xy2)2x((1+xy2)2)(1+xy2)4\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - 2y \dfrac{x'\left(1+xy^2\right)^2-x\left( \left(1+xy^2\right)^2 \right)'}{\left(1+xy^2\right)^4}
Ce qui nous donne :
2fxy(x;y)=3y1+y22y(1+xy2)2x2(1+xy2)(1+xy2)(1+xy2)4\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - 2y \dfrac{\left(1+xy^2\right)^2-x2\left(1+xy^2\right)\left( 1+xy^2 \right)'}{\left(1+xy^2\right)^4}
Soit :
2fxy(x;y)=3y1+y22y(1+xy2)2x2(1+xy2)y2(1+xy2)4\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - 2y \dfrac{\left(1+xy^2\right)^2-x2\left(1+xy^2\right)y^2}{\left(1+xy^2\right)^4}
En simplifiant par 1+xy201+xy^2 \neq 0, on trouve que :
2fxy(x;y)=3y1+y22y(1+xy2)x2y2(1+xy2)3\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - 2y \dfrac{\left(1+xy^2\right)-x2y^2}{\left(1+xy^2\right)^3}
Où encore :
2fxy(x;y)=3y1+y22y1+xy22xy2(1+xy2)3\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - 2y \dfrac{1+xy^2-2xy^2}{\left(1+xy^2\right)^3}
Ce qui nous donne :
2fxy(x;y)=3y1+y22y1xy2(1+xy2)3\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - 2y \dfrac{1-xy^2}{\left(1+xy^2\right)^3}
Finalement, on obtient :
2fxy(x;y)=3y1+y22y(1xy2)(1+xy2)3{\color{green}{\boxed{\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - \dfrac{2y\left(1-xy^2\right)}{\left(1+xy^2\right)^3}}}}
Enfin, on a la seconde dérivée partielle seconde croisée suivante :
2fyx(x;y)=y(fx)(x;y)=y(31+y2y2(1+xy2)2)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial x} \right)(x\,;\,y) = \dfrac{\partial }{\partial y} \left( 3\sqrt{1+y^2} - \dfrac{y^2}{\left(1+xy^2\right)^2} \right)
Soit :
2fyx(x;y)=y(31+y2)y(y2(1+xy2)2)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( 3\sqrt{1+y^2} \right) - \dfrac{\partial }{\partial y} \left( \dfrac{y^2}{\left(1+xy^2\right)^2} \right)
Soit encore :
2fyx(x;y)=3y(1+y2)y(y2(1+xy2)2)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 3\dfrac{\partial }{\partial y} \left( \sqrt{1+y^2} \right) - \dfrac{\partial }{\partial y} \left( \dfrac{y^2}{\left(1+xy^2\right)^2} \right)
Ce qui nous donne :
2fyx(x;y)=3(1+y2)21+y2((y2)(1+xy2)2y2((1+xy2)2)(1+xy2)4)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 3 \dfrac{(1+y^2)'}{2\sqrt{1+y^2}} - \left( \dfrac{(y^2)'\left(1+xy^2\right)^2 - y^2 \left(\left(1+xy^2\right)^2\right)'}{\left(1+xy^2\right)^4} \right)
Soit encore :
2fyx(x;y)=32y21+y2(2y(1+xy2)2y22(1+xy2)(1+xy2)(1+xy2)4)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 3 \dfrac{2y}{2\sqrt{1+y^2}} - \left( \dfrac{2y\left(1+xy^2\right)^2 - y^2 2 \left(1+xy^2\right)\left(1+xy^2\right)'}{\left(1+xy^2\right)^4} \right)
Identiquement :
2fyx(x;y)=3y1+y2(2y(1+xy2)2y22(1+xy2)2xy(1+xy2)4)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 3 \dfrac{y}{\sqrt{1+y^2}} - \left( \dfrac{2y\left(1+xy^2\right)^2 - y^2 2 \left(1+xy^2\right)2xy}{\left(1+xy^2\right)^4} \right)
Comme 1+xy201+xy^2 \neq 0, on simplifie en :
2fyx(x;y)=3y1+y2(2y(1+xy2)4xy3(1+xy2)3)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - \left( \dfrac{2y\left(1+xy^2\right) - 4xy^3}{\left(1+xy^2\right)^3} \right)
Ce qui nous donne également :
2fyx(x;y)=3y1+y2(2y+2xy34xy3(1+xy2)3)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - \left( \dfrac{2y+2xy^3 - 4xy^3}{\left(1+xy^2\right)^3} \right)
Donc :
2fyx(x;y)=3y1+y2(2y2xy3(1+xy2)3)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - \left( \dfrac{2y-2xy^3 }{\left(1+xy^2\right)^3} \right)
En factorisant par 2y2y, on obtient :
2fyx(x;y)=3y1+y22y1xy2(1+xy2)3\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - 2y \dfrac{1-xy^2 }{\left(1+xy^2\right)^3}
Finalement, on obtient :
2fxy(x;y)=3y1+y22y(1xy2)(1+xy2)3{\color{green}{\boxed{\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{3y}{\sqrt{1+y^2}} - \dfrac{2y\left(1-xy^2\right)}{\left(1+xy^2\right)^3}}}}
Enfin la différentielle dfdf va s'écrire :
df(x;y)=fx(x;y)dx+fy(x;y)dydf(x\,;\,y) = \dfrac{\partial f}{\partial x}(x\,;\,y) \, dx + \dfrac{\partial f}{\partial y}(x\,;\,y) \, dy
Ainsi :
df(x;y)=(31+y2y2(1+xy2)2)dx+(3xy1+y22xy(1+xy2)2)dydf(x\,;\,y) = \left( 3\sqrt{1+y^2} - \dfrac{y^2}{\left(1+xy^2\right)^2} \right) \, dx + \left( \dfrac{3xy}{\sqrt{1+y^2}} - \dfrac{2xy}{\left(1+xy^2\right)^2} \right) \, dy
Finalement, on obtient l'expression suivante :
df(x;y)=(31+y2y2(1+xy2)2)dx+xy(31+y22(1+xy2)2)dy{\color{black}{\boxed{ df(x\,;\,y) = \left( 3\sqrt{1+y^2} - \dfrac{y^2}{\left(1+xy^2\right)^2} \right) \, dx + xy\left( \dfrac{3}{\sqrt{1+y^2}} - \dfrac{2}{\left(1+xy^2\right)^2} \right) \, dy }}}
Question 2

Pour la fonction ff proposée ci-dessous, déterminer les dérivées partielles premières, secondes et secondes croisées. Puis, vous écrirez l'expression de la différentielle dfdf.
(x;y)R2f(x;y)=3xcosh(xy)cos(x2+y2)(x\,;\,y) \in \mathbb{R}^2\, \longmapsto f(x\,;\,y) = 3x\cosh(xy)\cos\left(x^2+y^2\right)

Correction
On a la dérivée partielle première par rapport à xx suivante :
fx(x;y)=x(3xcosh(xy)cos(x2+y2))=3x(xcosh(xy)cos(x2+y2))\dfrac{\partial f}{\partial x}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( 3x\cosh(xy)\cos\left(x^2+y^2\right) \right) = 3\dfrac{\partial }{\partial x} \left( x\cosh(xy)\cos\left(x^2+y^2\right) \right)
Ce qui nous donne :
fx(x;y)=3(x(x)cosh(xy)cos(x2+y2)+xx(cosh(xy))cos(x2+y2)+xcosh(xy)x(cos(x2+y2)))\dfrac{\partial f}{\partial x}(x\,;\,y) = 3\left(\dfrac{\partial }{\partial x} \left( x \right) \cosh(xy)\cos\left(x^2+y^2\right) + x\dfrac{\partial }{\partial x} \left( \cosh(xy)\right) \cos\left(x^2+y^2\right) + x \cosh(xy) \dfrac{\partial }{\partial x} \left( \cos\left(x^2+y^2 \right) \right)\right)
Soit :
fx(x;y)=3(1cosh(xy)cos(x2+y2)+xysinh(xy)cos(x2+y2)xcosh(xy)2xsin(x2+y2))\dfrac{\partial f}{\partial x}(x\,;\,y) = 3\left(1 \cosh(xy)\cos\left(x^2+y^2\right) + xy \sinh(xy) \cos\left(x^2+y^2\right) - x \cosh(xy) 2x \sin\left(x^2+y^2 \right) \right)
Soit encore :
fx(x;y)=3(cosh(xy)cos(x2+y2)+xysinh(xy)cos(x2+y2)2x2cosh(xy)sin(x2+y2))\dfrac{\partial f}{\partial x}(x\,;\,y) = 3\left(\cosh(xy)\cos\left(x^2+y^2\right) + xy \sinh(xy) \cos\left(x^2+y^2\right) - 2x^2 \cosh(xy) \sin\left(x^2+y^2 \right) \right)
Diverses factorisations sont possibles. Cependant nous conserverons le résultat sous cette forme afin d'envisager une dérivation seconde plus aisée. Ainsi :
fx(x;y)=3(cosh(xy)cos(x2+y2)+xysinh(xy)cos(x2+y2)2x2cosh(xy)sin(x2+y2)){\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,y) = 3\left(\cosh(xy)\cos\left(x^2+y^2\right) + xy \sinh(xy) \cos\left(x^2+y^2\right) - 2x^2 \cosh(xy) \sin\left(x^2+y^2 \right) \right) }}}
On a la dérivée partielle première par rapport à yy suivante :
fy(x;y)=y(3xcosh(xy)cos(x2+y2))=3xy(cosh(xy)cos(x2+y2))\dfrac{\partial f}{\partial y}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( 3x\cosh(xy)\cos\left(x^2+y^2\right) \right) = 3x\dfrac{\partial }{\partial y} \left( \cosh(xy)\cos\left(x^2+y^2\right) \right)
Ce qui nous donne :
fy(x;y)=3x(y(cosh(xy))cos(x2+y2)+cosh(xy)y(cos(x2+y2)))\dfrac{\partial f}{\partial y}(x\,;\,y) = 3x\left(\dfrac{\partial }{\partial y} \left( \cosh(xy) \right) \cos\left(x^2+y^2\right) + \cosh(xy)\dfrac{\partial }{\partial y} \left( \cos\left(x^2+y^2\right) \right)\right)
Soit :
fy(x;y)=3x(xsinh(xy)cos(x2+y2)cosh(xy)2ysin(x2+y2))\dfrac{\partial f}{\partial y}(x\,;\,y) = 3x\left(x\sinh(xy) \cos\left(x^2+y^2\right) - \cosh(xy)2y \sin\left(x^2+y^2\right) \right)
D'où :
fy(x;y)=3x2sinh(xy)cos(x2+y2)6xycosh(xy)sin(x2+y2)\dfrac{\partial f}{\partial y}(x\,;\,y) = 3x^2 \sinh(xy) \cos\left(x^2+y^2\right) - 6xy \cosh(xy) \sin\left(x^2+y^2\right)
Finalement, cela nous donne :
fy(x;y)=3x(xsinh(xy)cos(x2+y2)2ycosh(xy)sin(x2+y2)){\color{blue}{\boxed{ \dfrac{\partial f}{\partial y}(x\,;\,y) = 3x \left( x\sinh(xy) \cos\left(x^2+y^2\right) - 2y \cosh(xy) \sin\left(x^2+y^2\right)\right) }}}
On a la dérivée partielle seconde par rapport à xx suivante :
2fx2(x;y)=x(x)(x;y)\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial }{\partial x} \right)(x\,;\,y)
Ce qui nous donne :
2fx2(x;y)=x(3(cosh(xy)cos(x2+y2)+xysinh(xy)cos(x2+y2)2x2cosh(xy)sin(x2+y2)))\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( 3\left(\cosh(xy)\cos\left(x^2+y^2\right) + xy \sinh(xy) \cos\left(x^2+y^2\right) - 2x^2 \cosh(xy) \sin\left(x^2+y^2 \right) \right) \right)
Ainsi :
2fx2(x;y)=3x((cosh(xy)cos(x2+y2)+xysinh(xy)cos(x2+y2)2x2cosh(xy)sin(x2+y2)))\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = 3\dfrac{\partial }{\partial x} \left( \left(\cosh(xy)\cos\left(x^2+y^2\right) + xy \sinh(xy) \cos\left(x^2+y^2\right) - 2x^2 \cosh(xy) \sin\left(x^2+y^2 \right) \right) \right)
Soit encore :
132fx2(x;y)=x(cosh(xy)cos(x2+y2))+yx(xsinh(xy)cos(x2+y2))2x(x2cosh(xy)sin(x2+y2))\dfrac{1}{3}\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = \dfrac{\partial }{\partial x} \left(\cosh(xy)\cos\left(x^2+y^2\right) \right) + y \dfrac{\partial }{\partial x} \left(x \sinh(xy) \cos\left(x^2+y^2\right) \right) - 2 \dfrac{\partial }{\partial x} \left(x^2 \cosh(xy) \sin\left(x^2+y^2 \right) \right)
On a alors :
132fx2(x;y)=x(cosh(xy))cos(x2+y2)+cosh(xy)x(cos(x2+y2))+y(x(x)sinh(xy)cos(x2+y2)+xx(sinh(xy))cos(x2+y2)+xsinh(xy)x(cos(x2+y2)))2(x(x2)cosh(xy)sin(x2+y2)+x2x(cosh(xy))sin(x2+y2)+x2cosh(xy)x(sin(x2+y2)))\begin{array}{rcl} \dfrac{1}{3}\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) & = & \dfrac{\partial }{\partial x} \left(\cosh(xy) \right) \cos\left(x^2+y^2\right) + \cosh(xy)\dfrac{\partial }{\partial x} \left(\cos\left(x^2+y^2\right) \right)\\ & & \\ & + & y \left( \dfrac{\partial }{\partial x} \left(x \right) \sinh(xy) \cos\left(x^2+y^2\right) + x \dfrac{\partial }{\partial x} \left( \sinh(xy)\right) \cos\left(x^2+y^2\right) + x \sinh(xy) \dfrac{\partial }{\partial x} \left( \cos\left(x^2+y^2\right)\right) \right) \\ & & \\& - & 2 \left(\dfrac{\partial }{\partial x} \left(x^2 \right) \cosh(xy) \sin\left(x^2+y^2 \right) + x^2 \dfrac{\partial }{\partial x} \left( \cosh(xy)\right) \sin\left(x^2+y^2 \right) + x^2 \cosh(xy) \dfrac{\partial }{\partial x} \left(\sin\left(x^2+y^2 \right) \right) \right)\end{array}
D'où :
132fx2(x;y)=ysinh(xy)cos(x2+y2)cosh(xy)2xsin(x2+y2)+y(1sinh(xy)cos(x2+y2)+xycosh(xy)cos(x2+y2)xsinh(xy)2xsin(x2+y2))2(2xcosh(xy)sin(x2+y2)+x2ysinh(xy)sin(x2+y2)+x2cosh(xy)2xcos(x2+y2))\begin{array}{rcl} \dfrac{1}{3}\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) & = & y \sinh(xy) \cos\left(x^2+y^2\right) - \cosh(xy) 2x \sin\left(x^2+y^2\right) \\ & & \\ & + & y \left( 1\sinh(xy) \cos\left(x^2+y^2\right) + xy\cosh(xy) \cos\left(x^2+y^2\right) - x \sinh(xy) 2x \sin\left(x^2+y^2\right) \right) \\ & & \\& - & 2 \left(2x \cosh(xy) \sin\left(x^2+y^2 \right) + x^2 y \sinh(xy) \sin\left(x^2+y^2 \right) + x^2 \cosh(xy) 2x\cos\left(x^2+y^2 \right) \right)\end{array}
Ainsi, on obtient :
132fx2(x;y)=2ysinh(xy)cos(x2+y2)6xcosh(xy)sin(x2+y2)+x(y24x2)cosh(xy)cos(x2+y2)4x2ysinh(xy)sin(x2+y2)\begin{array}{rcl} \dfrac{1}{3}\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) & = & 2y \sinh(xy) \cos\left(x^2+y^2\right) - 6x\cosh(xy) \sin\left(x^2+y^2\right) \\ & & \\ & + & x\left(y^2 -4x^2\right)\cosh(xy) \cos\left(x^2+y^2\right) - 4x^2y \sinh(xy)\sin\left(x^2+y^2\right) \\ & & \\ \end{array}
Plusieurs factorisations sont possibles. Par exemple, on a :
132fx2(x;y)=x((y24x2)cos(x2+y2)6sin(x2+y2))cosh(xy)+2y(cos(x2+y2)2x2sin(x2+y2))sinh(xy)\begin{array}{rcl} \dfrac{1}{3}\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) & = & x\left(\left(y^2 -4x^2\right) \cos\left(x^2+y^2\right) - 6 \sin\left(x^2+y^2\right) \right) \cosh(xy)\\ & & \\ & + & 2y\left( \cos\left(x^2+y^2\right) - 2x^2 \sin\left(x^2+y^2\right) \right) \sinh(xy)\\ & & \\ \end{array}
Finalement, on obtient :
2fx2(x;y)=3x((y24x2)cos(x2+y2)6sin(x2+y2))cosh(xy)+6y(cos(x2+y2)2x2sin(x2+y2))sinh(xy){\color{red}{\boxed{\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = 3x\left(\left(y^2 -4x^2\right) \cos\left(x^2+y^2\right) - 6 \sin\left(x^2+y^2\right) \right) \cosh(xy) + 6y\left( \cos\left(x^2+y^2\right) - 2x^2 \sin\left(x^2+y^2\right) \right) \sinh(xy)}}}
On a la dérivée partielle seconde par rapport à yy suivante :
2fy2(x;y)=y(y)(x;y)\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( \dfrac{\partial }{\partial y} \right)(x\,;\,y)
Ce qui nous donne :
2fy2(x;y)=y(3x2sinh(xy)cos(x2+y2)6xycosh(xy)sin(x2+y2))\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( 3x^2 \sinh(xy) \cos\left(x^2+y^2\right) - 6xy \cosh(xy) \sin\left(x^2+y^2\right) \right)
Soit :
2fy2(x;y)=3x2y(sinh(xy)cos(x2+y2))6xy(ycosh(xy)sin(x2+y2))\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = 3x^2\dfrac{\partial }{\partial y} \left( \sinh(xy) \cos\left(x^2+y^2\right) \right) - 6x\dfrac{\partial }{\partial y} \left(y \cosh(xy) \sin\left(x^2+y^2\right) \right)
Donc :
2fy2(x;y)=3x2(y(sinh(xy))cos(x2+y2)+sinh(xy)y(cos(x2+y2)))6x(y(y)cosh(xy)sin(x2+y2)+yy(cosh(xy))sin(x2+y2)+ycosh(xy)y(sin(x2+y2)))\begin{array}{rcl}\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) & = & 3x^2 \left( \dfrac{\partial }{\partial y} \left( \sinh(xy) \right) \cos\left(x^2+y^2\right) + \sinh(xy) \dfrac{\partial }{\partial y} \left( \cos\left(x^2+y^2\right)\right) \right) \\ & & \\ & - & 6x \left( \dfrac{\partial }{\partial y} \left(y\right) \cosh(xy)\sin\left(x^2+y^2\right) + y \dfrac{\partial }{\partial y} \left( \cosh(xy) \right) \sin\left(x^2+y^2\right) + y \cosh(xy) \dfrac{\partial }{\partial y} \left( \sin\left(x^2+y^2\right)\right)\right) \\ \end{array}
Ce qui nous donne :
2fy2(x;y)=3x2(xcosh(xy)cos(x2+y2)sinh(xy)2ysin(x2+y2))6x(1cosh(xy)sin(x2+y2)+yxsinh(xy)sin(x2+y2)+ycosh(xy)2ycos(x2+y2))\begin{array}{rcl}\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) & = & 3x^2 \left( x\cosh(xy) \cos\left(x^2+y^2\right) - \sinh(xy) 2y \sin\left(x^2+y^2\right)\right) \\ & & \\ & - & 6x \left( 1 \cosh(xy)\sin\left(x^2+y^2\right) + y x\sinh(xy) \sin\left(x^2+y^2\right) + y \cosh(xy) 2y \cos\left(x^2+y^2\right) \right) \\ \end{array}
Soit encore :
2fy2(x;y)=3x3cosh(xy)cos(x2+y2)6x2ysinh(xy)sin(x2+y2)6xcosh(xy)sin(x2+y2)6x2ysinh(xy)sin(x2+y2)12xy2cosh(xy)cos(x2+y2)\begin{array}{rcl}\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) & = & 3x^3\cosh(xy) \cos\left(x^2+y^2\right) - 6x^2y\sinh(xy) \sin\left(x^2+y^2\right) \\ & & \\ & - & 6x \cosh(xy)\sin\left(x^2+y^2\right) - 6x^2y \sinh(xy) \sin\left(x^2+y^2\right) - 12xy^2 \cosh(xy) \cos\left(x^2+y^2\right) \\ \end{array}
Plusieurs factorisations sont possibles. On a par exemple :
2fy2(x;y)=3x((x24y2)cos(x2+y2)2sin(x2+y2))cosh(xy)12x2ysin(x2+y2)sinh(xy){\color{red}{\boxed{\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y) = 3x \left(\left( x^2 - 4y^2 \right) \cos\left(x^2+y^2\right) - 2 \sin\left(x^2+y^2\right)\right) \cosh(xy) - 12 x^2 y \sin\left(x^2+y^2\right) \sinh(xy) }}}
Puis, on a la première dérivée partielle seconde croisée suivante :
2fxy(x;y)=x(fy)(x;y)=x(3x2sinh(xy)cos(x2+y2)6xycosh(xy)sin(x2+y2))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial y} \right)(x\,;\,y) = \dfrac{\partial }{\partial x} \left( 3x^2 \sinh(xy) \cos\left(x^2+y^2\right) - 6xy \cosh(xy) \sin\left(x^2+y^2\right) \right)
Soit :
2fxy(x;y)=3x(x2sinh(xy)cos(x2+y2)2xycosh(xy)sin(x2+y2))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = 3\dfrac{\partial }{\partial x} \left( x^2 \sinh(xy) \cos\left(x^2+y^2\right) - 2xy \cosh(xy) \sin\left(x^2+y^2\right) \right)
Soit encore :
132fxy(x;y)=x(x2)sinh(xy)cos(x2+y2)+x2x(sinh(xy))cos(x2+y2)+x2sinh(xy)x(cos(x2+y2))2y(x(x)cosh(xy)sin(x2+y2)+xx(cosh(xy))sin(x2+y2)+xcosh(xy)x(sin(x2+y2)))\begin{array}{rcl}\dfrac{1}{3}\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) & = & \dfrac{\partial }{\partial x} \left( x^2 \right) \sinh(xy) \cos\left(x^2+y^2\right) + x^2 \dfrac{\partial }{\partial x} \left( \sinh(xy) \right) \cos\left(x^2+y^2\right) + x^2 \sinh(xy) \dfrac{\partial }{\partial x} \left( \cos\left(x^2+y^2\right) \right)\\ & & \\ & - & 2y \left( \dfrac{\partial }{\partial x} \left( x \right) \cosh(xy) \sin\left(x^2+y^2\right) + x \dfrac{\partial }{\partial x} \left( \cosh(xy) \right) \sin\left(x^2+y^2\right) + x \cosh(xy) \dfrac{\partial }{\partial x} \left( \sin\left(x^2+y^2\right) \right) \right) \\ \end{array}
Ce qui nous donne :
132fxy(x;y)=2xsinh(xy)cos(x2+y2)+x2ycosh(xy)cos(x2+y2)x2sinh(xy)2xsin(x2+y2)2y(1cosh(xy)sin(x2+y2)+xysinh(xy)sin(x2+y2)+xcosh(xy)2xcos(x2+y2))\begin{array}{rcl}\dfrac{1}{3}\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) & = & 2x \sinh(xy) \cos\left(x^2+y^2\right) + x^2 y\cosh(xy) \cos\left(x^2+y^2\right) - x^2 \sinh(xy) 2x \sin\left(x^2+y^2\right) \\ & & \\ & - & 2y \left(1\cosh(xy) \sin\left(x^2+y^2\right) + xy \sinh(xy) \sin\left(x^2+y^2\right) + x \cosh(xy) 2x\cos\left(x^2+y^2\right) \right) \\ \end{array}
Soit encore :
132fxy(x;y)=2xsinh(xy)cos(x2+y2)+x2ycosh(xy)cos(x2+y2)2x3sinh(xy)sin(x2+y2)2ycosh(xy)sin(x2+y2)2xy2sinh(xy)sin(x2+y2)4x2ycosh(xy)cos(x2+y2)\begin{array}{rcl}\dfrac{1}{3}\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) & = & 2x \sinh(xy) \cos\left(x^2+y^2\right) + x^2 y\cosh(xy) \cos\left(x^2+y^2\right) - 2x^3 \sinh(xy)\sin\left(x^2+y^2\right) \\ & & \\ & - & 2y \cosh(xy) \sin\left(x^2+y^2\right) - 2xy^2 \sinh(xy) \sin\left(x^2+y^2\right) - 4x^2y \cosh(xy)\cos\left(x^2+y^2\right) \\ \end{array}
D'où :
132fxy(x;y)=2xsinh(xy)cos(x2+y2)3x2ycosh(xy)cos(x2+y2)2x(x2+y2)sinh(xy)sin(x2+y2)2ycosh(xy)sin(x2+y2)\begin{array}{rcl}\dfrac{1}{3}\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) & = & 2x \sinh(xy) \cos\left(x^2+y^2\right) - 3x^2 y\cosh(xy) \cos\left(x^2+y^2\right) - 2x \left(x^2 + y^2\right) \sinh(xy)\sin\left(x^2+y^2\right) \\ & & \\ & - & 2y \cosh(xy) \sin\left(x^2+y^2\right) \\ \end{array}
Finalement :
2fxy(x;y)=3x(2sinh(xy)3xycosh(xy))cos(x2+y2)6(x(x2+y2)sinh(xy)+ycosh(xy))sin(x2+y2){\color{green}{\boxed{\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y) = 3x\left( 2 \sinh(xy) - 3x y\cosh(xy) \right) \cos\left(x^2+y^2\right) - 6 \left( x \left(x^2 + y^2\right) \sinh(xy) + y \cosh(xy) \right) \sin\left(x^2+y^2\right) }}}
Enfin, on a la seconde dérivée partielle seconde croisée suivante :
2fyx(x;y)=y(fx)(x;y)\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial x} \right)(x\,;\,y)
Soit :
2fyx(x;y)=y(3(cosh(xy)cos(x2+y2)+xysinh(xy)cos(x2+y2)2x2cosh(xy)sin(x2+y2)))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( 3\left(\cosh(xy)\cos\left(x^2+y^2\right) + xy \sinh(xy) \cos\left(x^2+y^2\right) - 2x^2 \cosh(xy) \sin\left(x^2+y^2 \right) \right) \right)
Soit encore :
132fyx(x;y)=y(cosh(xy)cos(x2+y2))+xy(ysinh(xy)cos(x2+y2))2x2y(cosh(xy)sin(x2+y2))\dfrac{1}{3}\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = \dfrac{\partial }{\partial y} \left( \cosh(xy)\cos\left(x^2+y^2\right) \right) + x \dfrac{\partial }{\partial y} \left( y \sinh(xy) \cos\left(x^2+y^2\right) \right) - 2x^2 \dfrac{\partial }{\partial y} \left(\cosh(xy) \sin\left(x^2+y^2 \right) \right)
Ainsi :
132fyx(x;y)=y(cosh(xy))cos(x2+y2)+cosh(xy)y(cos(x2+y2))+x(y(y)sinh(xy)cos(x2+y2)+yy(sinh(xy))cos(x2+y2)+ysinh(xy)y(cos(x2+y2)))2x2(y(cosh(xy))sin(x2+y2)+cosh(xy)y(sin(x2+y2)))\begin{array}{rcl} \dfrac{1}{3}\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) & = & \dfrac{\partial }{\partial y} \left( \cosh(xy) \right) \cos\left(x^2+y^2\right) + \cosh(xy) \dfrac{\partial }{\partial y} \left( \cos\left(x^2+y^2\right) \right)\\ & & \\ & + & x \left( \dfrac{\partial }{\partial y} \left( y \right) \sinh(xy) \cos\left(x^2+y^2\right) + y \dfrac{\partial }{\partial y} \left(\sinh(xy) \right) \cos\left(x^2+y^2\right) + y\sinh(xy) \dfrac{\partial }{\partial y} \left( \cos\left(x^2+y^2\right) \right)\right) \\ & & \\ & - & 2x^2 \left( \dfrac{\partial }{\partial y} \left(\cosh(xy) \right) \sin\left(x^2+y^2 \right) + \cosh(xy) \dfrac{\partial }{\partial y} \left(\sin\left(x^2+y^2\right) \right)\right)\\ \end{array}
On a alors :
132fyx(x;y)=xsinh(xy)cos(x2+y2)cosh(xy)2ysin(x2+y2)+x(1sinh(xy)cos(x2+y2)+yxcosh(xy)cos(x2+y2)ysinh(xy)2ysin(x2+y2))2x2(xsinh(xy)sin(x2+y2)+cosh(xy)2ycos(x2+y2))\begin{array}{rcl} \dfrac{1}{3}\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) & = & x\sinh(xy) \cos\left(x^2+y^2\right) - \cosh(xy) 2y\sin\left(x^2+y^2\right) \\ & & \\ & + & x \left( 1 \sinh(xy) \cos\left(x^2+y^2\right) + y x\cosh(xy)\cos\left(x^2+y^2\right) - y\sinh(xy) 2y\sin\left(x^2+y^2\right) \right) \\ & & \\ & - & 2x^2 \left( x\sinh(xy) \sin\left(x^2+y^2 \right) + \cosh(xy) 2y\cos\left(x^2+y^2\right)\right)\\ \end{array}
Ce qui nous donne :
132fyx(x;y)=xsinh(xy)cos(x2+y2)2ycosh(xy)sin(x2+y2)+xsinh(xy)cos(x2+y2)+x2ycosh(xy)cos(x2+y2)2xy2sinh(xy)sin(x2+y2)2x3sinh(xy)sin(x2+y2)4x2ycosh(xy)cos(x2+y2)\begin{array}{rcl} \dfrac{1}{3}\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) & = & x\sinh(xy) \cos\left(x^2+y^2\right) - 2y\cosh(xy) \sin\left(x^2+y^2\right) \\ & & \\ & + & x\sinh(xy) \cos\left(x^2+y^2\right) + x^2y\cosh(xy)\cos\left(x^2+y^2\right) - 2xy^2\sinh(xy)\sin\left(x^2+y^2\right) \\ & & \\ & - & 2x^3\sinh(xy) \sin\left(x^2+y^2 \right) - 4x^2y\cosh(xy) \cos\left(x^2+y^2\right)\\ \end{array}
Donc :
132fyx(x;y)=2xsinh(xy)cos(x2+y2)2ycosh(xy)sin(x2+y2)2x(x2+y2)sinh(xy)sin(x2+y2)3x2ycosh(xy)cos(x2+y2)\begin{array}{rcl} \dfrac{1}{3}\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) & = & 2x\sinh(xy) \cos\left(x^2+y^2\right) - 2y\cosh(xy) \sin\left(x^2+y^2\right) - 2x \left(x^2 + y^2 \right)\sinh(xy)\sin\left(x^2+y^2\right) \\ & & \\ & - & 3x^2y\cosh(xy) \cos\left(x^2+y^2\right)\\ \end{array}
Finalement, on obtient :
2fyx(x;y)=3x(2sinh(xy)3xycosh(xy))cos(x2+y2)6(x(x2+y2)sinh(xy)+ycosh(xy))sin(x2+y2){\color{green}{\boxed{\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y) = 3x\left( 2 \sinh(xy) - 3x y\cosh(xy) \right) \cos\left(x^2+y^2\right) - 6 \left( x \left(x^2 + y^2\right) \sinh(xy) + y \cosh(xy) \right) \sin\left(x^2+y^2\right) }}}
Enfin la différentielle dfdf va s'écrire :
df(x;y)=fx(x;y)dx+fy(x;y)dydf(x\,;\,y) = \dfrac{\partial f}{\partial x}(x\,;\,y) \, dx + \dfrac{\partial f}{\partial y}(x\,;\,y) \, dy
Finalement, on obtient l'expression suivante :
df(x;y)=3(cosh(xy)cos(x2+y2)+xysinh(xy)cos(x2+y2)2x2cosh(xy)sin(x2+y2))dx+3x(xsinh(xy)cos(x2+y2)2ycosh(xy)sin(x2+y2))dy{\color{black}{\boxed{ \begin{array}{rcl} df(x\,;\,y) & = & 3\left(\cosh(xy)\cos\left(x^2+y^2\right) + xy \sinh(xy) \cos\left(x^2+y^2\right) - 2x^2 \cosh(xy) \sin\left(x^2+y^2 \right) \right) \, dx \\ & & \\ & + & 3x \left( x\sinh(xy) \cos\left(x^2+y^2\right) - 2y \cosh(xy) \sin\left(x^2+y^2\right) \right) \, dy \\ \end{array} }}}
Question 3
Pour la fonction ff proposée ci-dessous, déterminer les dérivées partielles premières, secondes et secondes croisées. Puis, vous écrirez l'expression de la différentielle dfdf.

Soit AA, λ\lambda, kk et ω\omega quatre constantes réelles strictement positives. Soit φ\varphi une grandeur réelle. On considère la fonction suivante : (x;y)R2f(x;t)=Aeλtcos(kx+ωt+φ)(x\,;\,y) \in \mathbb{R}^2\, \longmapsto f(x\,;\,t) = Ae^{-\lambda t}\cos\left(kx + \omega t + \varphi \right)

Correction
On a la dérivée partielle première par rapport à xx suivante :
fx(x;t)=x(Aeλtcos(kx+ωt+φ))=Aeλtx(cos(kx+ωt+φ))\dfrac{\partial f}{\partial x}(x\,;\,t) = \dfrac{\partial }{\partial x} \left( Ae^{-\lambda t}\cos\left(kx + \omega t + \varphi \right) \right) = A e^{-\lambda t}\dfrac{\partial }{\partial x} \left( \cos\left(kx + \omega t + \varphi \right) \right)
Ce qui nous donne :
fx(x;t)=Aeλtx(kx+ωt+φ)sin(kx+ωt+φ)\dfrac{\partial f}{\partial x}(x\,;\,t) = - A e^{-\lambda t} \dfrac{\partial }{\partial x} \left( kx + \omega t + \varphi \right) \sin\left(kx + \omega t + \varphi \right)
Soit :
fx(x;t)=Aeλtksin(kx+ωt+φ)\dfrac{\partial f}{\partial x}(x\,;\,t) = - A e^{-\lambda t} k\sin\left(kx + \omega t + \varphi \right)
Finalement :
fx(x;t)=kAeλtsin(kx+ωt+φ){\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,t) = -kAe^{-\lambda t}\sin\left(kx + \omega t + \varphi \right) }}}
On a la dérivée partielle première par rapport à tt suivante :
ft(x;t)=t(Aeλtcos(kx+ωt+φ))=At(eλtcos(kx+ωt+φ))\dfrac{\partial f}{\partial t}(x\,;\,t) = \dfrac{\partial }{\partial t} \left( Ae^{-\lambda t}\cos\left(kx + \omega t + \varphi \right) \right) = A \dfrac{\partial }{\partial t} \left( e^{-\lambda t} \cos\left(kx + \omega t + \varphi \right) \right)
Ce qui nous donne :
ft(x;t)=A(t(eλt)cos(kx+ωt+φ)+eλtt(cos(kx+ωt+φ)))\dfrac{\partial f}{\partial t}(x\,;\,t) = A \left( \dfrac{\partial }{\partial t} \left( e^{-\lambda t} \right) \cos\left(kx + \omega t + \varphi \right) + e^{-\lambda t} \dfrac{\partial }{\partial t} \left( \cos\left(kx + \omega t + \varphi \right) \right) \right)
Soit :
ft(x;t)=A(λeλtcos(kx+ωt+φ)eλtt(kx+ωt+φ)sin(kx+ωt+φ))\dfrac{\partial f}{\partial t}(x\,;\,t) = A \left( - \lambda e^{-\lambda t} \cos\left(kx + \omega t + \varphi \right) - e^{-\lambda t} \dfrac{\partial }{\partial t} \left( kx + \omega t + \varphi \right) \sin\left(kx + \omega t + \varphi \right)\right)
Soit encore :
ft(x;t)=A(λeλtcos(kx+ωt+φ)eλtωsin(kx+ωt+φ))\dfrac{\partial f}{\partial t}(x\,;\,t) = A \left( - \lambda e^{-\lambda t} \cos\left(kx + \omega t + \varphi \right) - e^{-\lambda t} \omega \sin\left(kx + \omega t + \varphi \right)\right)
Finalement :
ft(x;t)=Aeλt(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ)){\color{blue}{\boxed{ \dfrac{\partial f}{\partial t}(x\,;\,t) = -Ae^{-\lambda t} \left( \lambda \cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right) }}}
On a la dérivée partielle seconde par rapport à xx suivante :
2fx2(x;y)=x(x)(x;t)\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial }{\partial x} \right)(x\,;\,t)
Ce qui nous donne :
2fx2(x;t)=x(kAeλtsin(kx+ωt+φ))\dfrac{\partial^2 f}{\partial x^2}(x\,;\,t) = \dfrac{\partial }{\partial x} \left( -kAe^{-\lambda t}\sin\left(kx + \omega t + \varphi \right) \right)
Ainsi :
2fx2(x;t)=kAeλtx(sin(kx+ωt+φ))\dfrac{\partial^2 f}{\partial x^2}(x\,;\,t) = -kAe^{-\lambda t}\dfrac{\partial }{\partial x} \left( \sin\left(kx + \omega t + \varphi \right) \right)
D'où :
2fx2(x;t)=kAeλtx(kx+ωt+φ)cos(kx+ωt+φ)\dfrac{\partial^2 f}{\partial x^2}(x\,;\,t) = -kAe^{-\lambda t}\dfrac{\partial }{\partial x} \left( kx + \omega t + \varphi \right) \cos\left(kx + \omega t + \varphi \right)
Ce qui nous donne :
2fx2(x;t)=kAeλtkcos(kx+ωt+φ)\dfrac{\partial^2 f}{\partial x^2}(x\,;\,t) = -kAe^{-\lambda t}k \cos\left(kx + \omega t + \varphi \right)
Finalement :
2fx2(x;t)=k2Aeλtcos(kx+ωt+φ){\color{red}{\boxed{ \dfrac{\partial^2 f}{\partial x^2}(x\,;\,t) = -k^2Ae^{-\lambda t} \cos\left(kx + \omega t + \varphi \right)}}}
Puis, on a la dérivée partielle seconde par rapport au temps tt suivante :
2ft2(x;y)=t(t)(x;t)\dfrac{\partial^2 f}{\partial t^2}(x\,;\,y) = \dfrac{\partial }{\partial t} \left( \dfrac{\partial }{\partial t} \right)(x\,;\,t)
Ce qui nous donne :
2ft2(x;t)=t(Aeλt(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ)))\dfrac{\partial^2 f}{\partial t^2}(x\,;\,t) = \dfrac{\partial }{\partial t} \left( -Ae^{-\lambda t} \left( \lambda \cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right) \right)
Ainsi :
2ft2(x;t)=At(eλt(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ)))\dfrac{\partial^2 f}{\partial t^2}(x\,;\,t) = -A\dfrac{\partial }{\partial t} \left( e^{-\lambda t} \left( \lambda \cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right) \right)
Ce sui nous donne :
2ft2(x;t)=A(t(eλt)(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ))+eλtt(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ)))\dfrac{\partial^2 f}{\partial t^2}(x\,;\,t) = -A \left(\dfrac{\partial }{\partial t} \left( e^{-\lambda t} \right) \left( \lambda \cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right) + e^{-\lambda t} \dfrac{\partial }{\partial t} \left( \lambda\cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right)\right)
On a alors :
2ft2(x;t)=A(λeλt(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ))+eλtω(λsin(kx+ωt+φ)+ωcos(kx+ωt+φ)))\dfrac{\partial^2 f}{\partial t^2}(x\,;\,t) = -A \left( - \lambda e^{-\lambda t} \left( \lambda \cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right) + e^{-\lambda t} \omega \left(- \lambda\sin\left(kx + \omega t + \varphi \right) + \omega\cos\left(kx + \omega t + \varphi \right) \right)\right)
Ainsi :
2ft2(x;t)=Aeλt(λ(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ))ω(λsin(kx+ωt+φ)+ωcos(kx+ωt+φ)))\dfrac{\partial^2 f}{\partial t^2}(x\,;\,t) = A e^{-\lambda t}\left( \lambda\left( \lambda \cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right) - \omega \left(- \lambda\sin\left(kx + \omega t + \varphi \right) + \omega\cos\left(kx + \omega t + \varphi \right) \right)\right)
D'où :
2ft2(x;t)=Aeλt(λ2cos(kx+ωt+φ)+λωsin(kx+ωt+φ)+λωsin(kx+ωt+φ)ω2cos(kx+ωt+φ))\dfrac{\partial^2 f}{\partial t^2}(x\,;\,t) = A e^{-\lambda t}\left( \lambda^2 \cos\left(kx + \omega t + \varphi \right) + \lambda \omega \sin\left(kx + \omega t + \varphi \right) + \lambda \omega \sin\left(kx + \omega t + \varphi \right) - \omega^2 \cos\left(kx + \omega t + \varphi \right) \right)
Ce qui nous donne finalement :
2ft2(x;t)=Aeλt(λ2cos(kx+ωt+φ)+2λωsin(kx+ωt+φ)ω2cos(kx+ωt+φ)){\color{red}{\boxed{ \dfrac{\partial^2 f}{\partial t^2}(x\,;\,t) = A e^{-\lambda t}\left( \lambda^2 \cos\left(kx + \omega t + \varphi \right) + 2\lambda \omega \sin\left(kx + \omega t + \varphi \right) - \omega^2 \cos\left(kx + \omega t + \varphi \right) \right) }}}
Puis, on a la première dérivée partielle seconde croisée suivante :
2fxt(x;t)=x(ft)(x;t)=x(Aeλt(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ)))\dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,t) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial t} \right)(x\,;\,t) = \dfrac{\partial }{\partial x} \left( -Ae^{-\lambda t} \left( \lambda \cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right) \right)
Soit :
2fxt(x;t)=Aeλtx(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ))\dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,t) = -Ae^{-\lambda t}\dfrac{\partial }{\partial x} \left( \lambda \cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right)
On a alors :
2fxt(x;t)=Aeλt(λksin(kx+ωt+φ)+ωkcos(kx+ωt+φ))\dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,t) = -Ae^{-\lambda t} \left( -\lambda k \sin\left(kx + \omega t + \varphi \right) + \omega k \cos\left(kx + \omega t + \varphi \right) \right)
Ce qui nous donne :
2fxt(x;t)=Akeλt(λsin(kx+ωt+φ)+ωcos(kx+ωt+φ))\dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,t) = -Ake^{-\lambda t} \left( -\lambda \sin\left(kx + \omega t + \varphi \right) + \omega \cos\left(kx + \omega t + \varphi \right) \right)
Finalement :
2fxt(x;t)=Akeλt(λsin(kx+ωt+φ)ωcos(kx+ωt+φ)){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,t) = Ake^{\lambda t} \left( \lambda \sin\left(kx + \omega t + \varphi \right) - \omega \cos\left(kx + \omega t + \varphi \right) \right) }}}
Puis, on a la seconde dérivée partielle croisée suivante :
2ftx(x;t)=t(fx)(x;t)=t(kAeλtsin(kx+ωt+φ))\dfrac{\partial^2 f}{\partial t \, \partial x}(x\,;\,t) = \dfrac{\partial }{\partial t} \left( \dfrac{\partial f}{\partial x} \right)(x\,;\,t) = \dfrac{\partial }{\partial t} \left( -kAe^{-\lambda t}\sin\left(kx + \omega t + \varphi \right) \right)
Soit :
2ftx(x;t)=kAt(eλtsin(kx+ωt+φ))\dfrac{\partial^2 f}{\partial t \, \partial x}(x\,;\,t) = -kA\dfrac{\partial }{\partial t} \left( e^{-\lambda t}\sin\left(kx + \omega t + \varphi \right)\right)
On a alors :
2ftx(x;t)=kA(t(eλt)sin(kx+ωt+φ)+eλtt(sin(kx+ωt+φ)))\dfrac{\partial^2 f}{\partial t \, \partial x}(x\,;\,t) = -kA \left( \dfrac{\partial }{\partial t} \left( e^{-\lambda t}\right) \sin\left(kx + \omega t + \varphi \right) + e^{-\lambda t} \dfrac{\partial }{\partial t} \left(\sin\left(kx + \omega t + \varphi \right) \right)\right)
Ce qui nous donne :
2ftx(x;t)=kA(λeλtsin(kx+ωt+φ)+eλtωcos(kx+ωt+φ))\dfrac{\partial^2 f}{\partial t \, \partial x}(x\,;\,t) = -kA \left( -\lambda e^{-\lambda t} \sin\left(kx + \omega t + \varphi \right) + e^{-\lambda t} \omega \cos\left(kx + \omega t + \varphi \right) \right)
Finalement :
2fxt(x;t)=Akeλt(λsin(kx+ωt+φ)ωcos(kx+ωt+φ)){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,t) = Ake^{\lambda t} \left( \lambda \sin\left(kx + \omega t + \varphi \right) - \omega \cos\left(kx + \omega t + \varphi \right) \right) }}}
Enfin la différentielle dfdf va s'écrire :
df(x;t)=fx(x;t)dx+ft(x;t)dtdf(x\,;\,t) = \dfrac{\partial f}{\partial x}(x\,;\,t) \, dx + \dfrac{\partial f}{\partial t}(x\,;\,t) \, dt
Finalement, on obtient l'expression suivante :
df(x;t)=Aeλt(ksin(kx+ωt+φ)dx+(λcos(kx+ωt+φ)+ωsin(kx+ωt+φ))dt){\color{black}{\boxed{ df(x\,;\,t) = -Ae^{-\lambda t} \left( k\sin\left(kx + \omega t + \varphi \right) \, dx + \left( \lambda \cos\left(kx + \omega t + \varphi \right) + \omega\sin\left(kx + \omega t + \varphi \right) \right) \, dt \right) }}}
Question 4

Soit i2=1i^2 = -1. Soit AA une fonction réelle au moins deux fois dérivables sur chacune des deux variables réelles yy et zz. Soit kxk_x, kyk_y, kzk_z et ω\omega quatre constantes réelles strictement positives. Soit φ\varphi une grandeur réelle. On considère la fonction suivante : (x;y;z);tR3×R+f(x;y;z;t)=A(y;z)ei(kxx+kyy+kzz+ωt+φ)(x\,;\,y\,;\,z)\,;\, t \in \mathbb{R}^3 \times \mathbb{R}^{+}\, \longmapsto f(x\,;\,y\,;\,z\,;\,t) = A(y\,;\,z)e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Pour la fonction ff proposée ci-dessous, déterminer les dérivées partielles premières, secondes et secondes croisées. Puis, vous écrirez l'expression de la différentielle dfdf.

Correction
On a :
fx(x;y;z;t)=x(A(y;z)ei(kxx+kyy+kzz+ωt+φ))=A(y;z)x(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial f}{\partial x}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial x}\left( A(y\,;\,z)e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right) = A(y\,;\,z) \dfrac{\partial }{\partial x}\left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
fx(x;y;z;t)=ikxA(y;z)ei(kxx+kyy+kzz+ωt+φ){\color{blue}{\boxed{ \dfrac{\partial f}{\partial x}(x\,;\,y\,;\,z\,;\,t) = i k_x A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
Puis, on a :
fy(x;y;z;t)=y(A(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial f}{\partial y}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y}\left( A(y\,;\,z)e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
fy(x;y;z;t)=y(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)y(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial f}{\partial y}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z)\dfrac{\partial }{\partial y}\left(e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Donc :
fy(x;y;z;t)=y(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)ikyei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial f}{\partial y}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z) i k_y e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
fy(x;y;z;t)=(y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{blue}{\boxed{ \dfrac{\partial f}{\partial y}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
On a également :
fz(x;y;z;t)=z(A(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial f}{\partial z}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z}\left( A(y\,;\,z)e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
fz(x;y;z;t)=z(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)z(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial f}{\partial z}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z)\dfrac{\partial }{\partial z}\left(e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Donc :
fz(x;y;z;t)=z(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)ikzei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial f}{\partial z}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z) i k_z e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
fz(x;y;z;t)=(z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{blue}{\boxed{ \dfrac{\partial f}{\partial z}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
Enfin, on a :
ft(x;y;z;t)=t(A(y;z)ei(kxx+kyy+kzz+ωt+φ))=A(y;z)t(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial f}{\partial t}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial t}\left( A(y\,;\,z)e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right) = A(y\,;\,z) \dfrac{\partial }{\partial t}\left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
ft(x;y;z;t)=iωA(y;z)ei(kxx+kyy+kzz+ωt+φ){\color{blue}{\boxed{ \dfrac{\partial f}{\partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
La dérivée partielle seconde en xx est donnée par :
2fx2(x;y;z;t)=x(fx)(x;y;z;t)=x(ikxA(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial x}\left( \dfrac{\partial f}{\partial x}\right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial x}\left( i k_x A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fx2(x;y;z;t)=ikxA(y;z)x(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y\,;\,z\,;\,t) = i k_x A(y\,;\,z)\dfrac{\partial }{\partial x}\left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit encore :
2fx2(x;y;z;t)=i2kx2A(y;z)ei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial x^2}(x\,;\,y\,;\,z\,;\,t) = i^2 k_x^2 A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2fx2(x;y;z;t)=kx2A(y;z)ei(kxx+kyy+kzz+ωt+φ){\color{red}{\boxed{ \dfrac{\partial^2 f}{\partial x^2}(x\,;\,y\,;\,z\,;\,t) = - k_x^2 A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
De plus la dérivée partielle seconde en yy est donnée par :
2fy2(x;y;z;t)=y(fy)(x;y;z;t)=y((y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y}\left( \dfrac{\partial f}{\partial y}\right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y}\left( \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fy2(x;y;z;t)=y(y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ)+(y(A(y;z))+ikyA(y;z))y(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y}\left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) \dfrac{\partial }{\partial y}\left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit encore :
2fy2(x;y;z;t)=(2y2(A(y;z))+ikyy(A(y;z)))ei(kxx+kyy+kzz+ωt+φ)+(y(A(y;z))+ikyA(y;z))ikyei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial y^2}(x\,;\,y\,;\,z\,;\,t) = \left(\dfrac{\partial^2 }{\partial y^2}\left( A(y\,;\,z) \right) + i k_y \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) \right)e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) i k_y e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2fy2(x;y;z;t)=(2y2(A(y;z))+2ikyy(A(y;z))ky2A(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{red}{\boxed{ \dfrac{\partial^2 f}{\partial y^2}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial^2 }{\partial y^2}\left( A(y\,;\,z) \right) + 2 i k_y \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) - k_y^2A(y\,;\,z)\right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
De plus la dérivée partielle seconde en zz est donnée par :
2fz2(x;y;z;t)=z(fz)(x;y;z;t)=z((z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z^2}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z}\left( \dfrac{\partial f}{\partial z}\right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z}\left( \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fz2(x;y;z;t)=z(z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ)+(z(A(y;z))+ikzA(y;z))z(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z^2}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z}\left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) \dfrac{\partial }{\partial z}\left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit encore :
2fz2(x;y;z;t)=(2z2(A(y;z))+ikzz(A(y;z)))ei(kxx+kyy+kzz+ωt+φ)+(z(A(y;z))+ikzA(y;z))ikzei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial z^2}(x\,;\,y\,;\,z\,;\,t) = \left(\dfrac{\partial^2 }{\partial z^2}\left( A(y\,;\,z) \right) + i k_z \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) \right)e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) i k_z e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2fz2(x;y;z;t)=(2z2(A(y;z))+2ikzz(A(y;z))ky2A(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{red}{\boxed{ \dfrac{\partial^2 f}{\partial z^2}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial^2 }{\partial z^2}\left( A(y\,;\,z) \right) + 2 i k_z \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) - k_y^2A(y\,;\,z)\right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
Enfin, la dérivée partielle seconde en tt est donnée par :
2ft2(x;y;z;t)=t(ft)(x;y;z;t)=t(iωA(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial t^2}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial t}\left( \dfrac{\partial f}{\partial t}\right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial t}\left( i \omega A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2ft2(x;y;z;t)=iωA(y;z)t(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial t^2}(x\,;\,y\,;\,z\,;\,t) = i \omega A(y\,;\,z)\dfrac{\partial }{\partial t}\left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit encore :
2ft2(x;y;z;t)=i2ω2A(y;z)ei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial t^2}(x\,;\,y\,;\,z\,;\,t) = i^2 \omega^2 A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2ft2(x;y;z;t)=ω2A(y;z)ei(kxx+kyy+kzz+ωt+φ){\color{red}{\boxed{ \dfrac{\partial^2 f}{\partial t^2}(x\,;\,y\,;\,z\,;\,t) = - \omega^2 A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
On a maintenant la première dérivée partielle seconde croisée suivante :
2fxy(x;y;z;t)=x(fy)(x;y;z;t)=x((y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial y} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial x} \left( \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fxy(x;y;z;t)=(y(A(y;z))+ikyA(y;z))x(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right)\dfrac{\partial }{\partial x} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit encore :
2fxy(x;y;z;t)=(y(A(y;z))+ikyA(y;z))ikxei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) i k_x e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2fxy(x;y;z;t)=ikx(y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial y}(x\,;\,y\,;\,z\,;\,t) = i k_x \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
On a maintenant la deuxième dérivée partielle seconde croisée suivante :
2fyx(x;y;z;t)=y(fx)(x;y;z;t)=y(ikxA(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial x} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y} \left( i k_x A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fyx(x;y;z;t)=ikxy(A(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y\,;\,z\,;\,t) = ik_x \dfrac{\partial }{\partial y} \left( A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Ce qui nous donne :
2fyx(x;y;z;t)=ikx(y(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)y(ei(kxx+kyy+kzz+ωt+φ)))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y\,;\,z\,;\,t) = ik_x \left( \dfrac{\partial }{\partial y} \left( A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z) \dfrac{\partial }{\partial y} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right) \right)
D'où :
2fyx(x;y;z;t)=ikx(y(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)ikyei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y\,;\,z\,;\,t) = ik_x \left( \dfrac{\partial }{\partial y} \left( A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z) i k_y e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Finalement :
2fyx(x;y;z;t)=ikx(y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial x}(x\,;\,y\,;\,z\,;\,t) = i k_x \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
On a maintenant la dérivée partielle seconde croisée suivante :
2fxz(x;y;z;t)=x(fz)(x;y;z;t)=x((z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial x \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial z} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial x} \left( \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fxz(x;y;z;t)=(z(A(y;z))+ikzA(y;z))x(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial x \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right)\dfrac{\partial }{\partial x} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit encore :
2fxz(x;y;z;t)=(z(A(y;z))+ikyA(y;z))ikxei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial x \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) i k_x e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2fxz(x;y;z;t)=ikx(z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial z}(x\,;\,y\,;\,z\,;\,t) = i k_x \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
On a maintenant la dérivée partielle seconde croisée associée suivante :
2fzx(x;y;z;t)=z(fx)(x;y;z;t)=z(ikxA(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z \, \partial x}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z} \left( \dfrac{\partial f}{\partial x} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z} \left( i k_x A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fzx(x;y;z;t)=ikxz(A(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z \, \partial x}(x\,;\,y\,;\,z\,;\,t) = ik_x \dfrac{\partial }{\partial z} \left( A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Ce qui nous donne :
2fzx(x;y;z;t)=ikx(z(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)z(ei(kxx+kyy+kzz+ωt+φ)))\dfrac{\partial^2 f}{\partial z \, \partial x}(x\,;\,y\,;\,z\,;\,t) = ik_x \left( \dfrac{\partial }{\partial z} \left( A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z) \dfrac{\partial }{\partial z} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right) \right)
D'où :
2fzx(x;y;z;t)=ikx(z(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)ikzei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z \, \partial x}(x\,;\,y\,;\,z\,;\,t) = ik_x \left( \dfrac{\partial }{\partial z} \left( A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z) i k_z e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Finalement :
2fzx(x;y;z;t)=ikx(z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial z \, \partial x}(x\,;\,y\,;\,z\,;\,t) = i k_x \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
Puis, on a la dérivée partielle seconde croisée suivante :
2fxt(x;y;z;t)=x(ft)(x;y;z;t)=x(iωA(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial t} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial x} \left( i \omega A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fxt(x;y;z;t)=iωA(y;z)x(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega A(y\,;\,z)\dfrac{\partial }{\partial x} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
D'où :
2fxt(x;y;z;t)=iωA(y;z)ikxei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega A(y\,;\,z) i k_x e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2fxt(x;y;z;t)=kxωA(y;z)ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial x \, \partial t}(x\,;\,y\,;\,z\,;\,t) = -k_x \omega A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
Puis, on a alors :
2ftx(x;y;z;t)=t(fx)(x;y;z;t)=t(ikxA(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial t \, \partial x}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial t} \left( \dfrac{\partial f}{\partial x} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial t} \left( i k_x A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2ftx(x;y;z;t)=ikxA(y;z)t(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial t \, \partial x}(x\,;\,y\,;\,z\,;\,t) = i k_x A(y\,;\,z)\dfrac{\partial }{\partial t} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
D'où :
2ftx(x;y;z;t)=ikxA(y;z)iωei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial t \, \partial x}(x\,;\,y\,;\,z\,;\,t) = i k_x A(y\,;\,z) i \omega e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2ftx(x;y;z;t)=kxωA(y;z)ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial t \, \partial x}(x\,;\,y\,;\,z\,;\,t) = -k_x \omega A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
On a maintenant la dérivée partielle seconde croisée suivante :
2fyz(x;y;z;t)=y(fz)(x;y;z;t)=y((z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial z} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y} \left( \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fyz(x;y;z;t)=y(z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ)+(z(A(y;z))+ikzA(y;z))y(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y} \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) \dfrac{\partial }{\partial y} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Ce qui nous donne :
2fyz(x;y;z;t)=(2yz(A(y;z))+ikzy(A(y;z)))ei(kxx+kyy+kzz+ωt+φ)+(z(A(y;z))+ikzA(y;z))ikyei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial y \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial^2 }{\partial y \, \partial z}\left( A(y\,;\,z) \right) + i k_z \dfrac{\partial }{\partial y} \left(A(y\,;\,z) \right) \right)e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) i k_y e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2fyz(x;y;z;t)=(2yz(A(y;z))+ikzy(A(y;z))+ikyz(A(y;z))kykzA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial^2 }{\partial y \, \partial z}\left( A(y\,;\,z) \right) + i k_z \dfrac{\partial }{\partial y} \left(A(y\,;\,z) \right) + i k_y \dfrac{\partial }{\partial z} \left(A(y\,;\,z) \right) - k_y k_z A(y\,;\,z)\right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
Puis, on a :
2fzy(x;y;z;t)=z(fy)(x;y;z;t)=z((y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z} \left( \dfrac{\partial f}{\partial y} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z} \left( \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fzy(x;y;z;t)=z(y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ)+(y(A(y;z))+ikyA(y;z))z(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z} \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) \dfrac{\partial }{\partial z} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Ce qui nous donne :
2fzy(x;y;z;t)=(2zy(A(y;z))+ikyz(A(y;z)))ei(kxx+kyy+kzz+ωt+φ)+(y(A(y;z))+ikyA(y;z))ikzei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial z \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial^2 }{\partial z \, \partial y}\left( A(y\,;\,z) \right) + i k_y \dfrac{\partial }{\partial z} \left(A(y\,;\,z) \right) \right)e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) i k_z e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2fzy(x;y;z;t)=(2zy(A(y;z))+ikzy(A(y;z))+ikyz(A(y;z))kykzA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial z \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial^2 }{\partial z \, \partial y}\left( A(y\,;\,z) \right) + i k_z \dfrac{\partial }{\partial y} \left(A(y\,;\,z) \right) + i k_y \dfrac{\partial }{\partial z} \left(A(y\,;\,z) \right) - k_y k_z A(y\,;\,z)\right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
Si la fonction AA satisfait au théorème de SchwarzSchwarz alors, sous cette condition, on a 2fyz=2fzy\dfrac{\partial^2 f}{\partial y \, \partial z} = \dfrac{\partial^2 f}{\partial z \, \partial y}.
On a maintenant :
2fyt(x;y;z;t)=y(ft)(x;y;z;t)=y(iωA(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y \, \partial t}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial t} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial y} \left( i \omega A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fyt(x;y;z;t)=iωy(A(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega \dfrac{\partial }{\partial y} \left( A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
D'où :
2fyt(x;y;z;t)=iω(y(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)y(ei(kxx+kyy+kzz+ωt+φ)))\dfrac{\partial^2 f}{\partial y \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega \left( \dfrac{\partial }{\partial y} \left(A(y\,;\,z)\right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z) \dfrac{\partial }{\partial y} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right) \right)
Ce qui nous donne :
2fyt(x;y;z;t)=iω(y(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)ikyei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial y \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega \left( \dfrac{\partial }{\partial y} \left(A(y\,;\,z)\right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z)i k_y e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Finalement :
2fyt(x;y;z;t)=iω(y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial y \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega \left( \dfrac{\partial }{\partial y} \left(A(y\,;\,z)\right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
De plus :
2fty(x;y;z;t)=t(fy)(x;y;z;t)=t((y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial t \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial t} \left( \dfrac{\partial f}{\partial y} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial t} \left( \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fty(x;y;z;t)=(y(A(y;z))+ikyA(y;z))t(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial t \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) \dfrac{\partial }{\partial t} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
D'où :
2fty(x;y;z;t)=(y(A(y;z))+ikyA(y;z))iωei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial t \, \partial y}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) i \omega e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2fty(x;y;z;t)=iω(y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial t \, \partial y}(x\,;\,y\,;\,z\,;\,t) = i \omega \left( \dfrac{\partial }{\partial y} \left(A(y\,;\,z)\right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
Puis, on a maintenant :
2fzt(x;y;z;t)=z(ft)(x;y;z;t)=z(iωA(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z \, \partial t}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z} \left( \dfrac{\partial f}{\partial t} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial z} \left( i \omega A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2fzt(x;y;z;t)=iωz(A(y;z)ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega \dfrac{\partial }{\partial z} \left( A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
D'où :
2fzt(x;y;z;t)=iω(z(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)z(ei(kxx+kyy+kzz+ωt+φ)))\dfrac{\partial^2 f}{\partial z \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega \left( \dfrac{\partial }{\partial z} \left(A(y\,;\,z)\right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z) \dfrac{\partial }{\partial z} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right) \right)
Ce qui nous donne :
2fzt(x;y;z;t)=iω(z(A(y;z))ei(kxx+kyy+kzz+ωt+φ)+A(y;z)ikzei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial z \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega \left( \dfrac{\partial }{\partial z} \left(A(y\,;\,z)\right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} + A(y\,;\,z) i k_z e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Finalement :
2fzt(x;y;z;t)=iω(z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial z \, \partial t}(x\,;\,y\,;\,z\,;\,t) = i \omega \left( \dfrac{\partial }{\partial z} \left(A(y\,;\,z)\right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
De plus :
2ftz(x;y;z;t)=t(fz)(x;y;z;t)=t((z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial t \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial t} \left( \dfrac{\partial f}{\partial z} \right)(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial }{\partial t} \left( \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
Soit :
2ftz(x;y;z;t)=(z(A(y;z))+ikzA(y;z))t(ei(kxx+kyy+kzz+ωt+φ))\dfrac{\partial^2 f}{\partial t \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) \dfrac{\partial }{\partial t} \left( e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \right)
D'où :
2ftz(x;y;z;t)=(z(A(y;z))+ikzA(y;z))iωei(kxx+kyy+kzz+ωt+φ)\dfrac{\partial^2 f}{\partial t \, \partial z}(x\,;\,y\,;\,z\,;\,t) = \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) i \omega e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}
Finalement :
2ftz(x;y;z;t)=iω(z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ){\color{green}{\boxed{ \dfrac{\partial^2 f}{\partial t \, \partial z}(x\,;\,y\,;\,z\,;\,t) = i \omega \left( \dfrac{\partial }{\partial z} \left(A(y\,;\,z)\right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} }}}
Enfin, la différentielle dfdf va s'écrire comme :
df(x;y;z;t)=fx(x;y;z;t)dx+fy(x;y;z;t)dy+fz(x;y;z;t)dz+ft(x;y;z;t)dtdf(x\,;\,y\,;\,z\,;\,t) = \dfrac{\partial f}{\partial x}(x\,;\,y\,;\,z\,;\,t) \, dx + \dfrac{\partial f}{\partial y}(x\,;\,y\,;\,z\,;\,t) \, dy + \dfrac{\partial f}{\partial z}(x\,;\,y\,;\,z\,;\,t) \, dz + \dfrac{\partial f}{\partial t}(x\,;\,y\,;\,z\,;\,t) \, dt
D'où :
df(x;y;z;t)=ikxA(y;z)ei(kxx+kyy+kzz+ωt+φ)dx+(y(A(y;z))+ikyA(y;z))ei(kxx+kyy+kzz+ωt+φ)dy+(z(A(y;z))+ikzA(y;z))ei(kxx+kyy+kzz+ωt+φ)dz+iωA(y;z)ei(kxx+kyy+kzz+ωt+φ)dt\begin{array}{rcl} df(x\,;\,y\,;\,z\,;\,t) & = & i k_x A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \, dx \\ & & \\ & + & \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \, dy \\ & & \\ & + & \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \, dz \\& & \\ & + & i \omega A(y\,;\,z) e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)} \, dt \\ \end{array}
Finalement :
df(x;y;z;t)=ei(kxx+kyy+kzz+ωt+φ)(ikxA(y;z)dx+(y(A(y;z))+ikyA(y;z))dy+(z(A(y;z))+ikzA(y;z))dz+iωA(y;z)dt){\color{black}{\boxed{ \begin{array}{rcl} df(x\,;\,y\,;\,z\,;\,t) & = & e^{i\left( k_x x + k_y y + k_z z + \omega t + \varphi\right)}\Bigg( i k_x A(y\,;\,z) \, dx \\ & & \\ & + & \left( \dfrac{\partial }{\partial y}\left( A(y\,;\,z) \right) + i k_y A(y\,;\,z) \right) \, dy \\ & & \\ & + & \left( \dfrac{\partial }{\partial z}\left( A(y\,;\,z) \right) + i k_z A(y\,;\,z) \right) \, dz \\& & \\ & + & i \omega A(y\,;\,z) \, dt \Bigg) \\ \end{array} }}}