Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Dérivation et Calcul différentiel

Calculs de dérivées et de différentielles : Mise en pratique épisode 4 - Exercice 1

1 h
90
Pour chacune des fonctions ff qui vous seront proposées, determiner la fonction dérivée ff' ainsi que la différentielle associée dfdf.
Question 1

Soit x[3,8;3,2]f(x)=1ln(ln(xln(sin2(x))))x \in [-3,8\,;\,-3,2] \longmapsto f(x) = \dfrac{1}{\ln\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right)}.

Correction
On a :
f(x)=(1ln(ln(xln(sin2(x)))))f'(x) = \left( \dfrac{1}{\ln\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right)} \right)'
Soit :
f(x)=(ln(ln(xln(sin2(x)))))(ln(ln(xln(sin2(x)))))2=(ln(xln(sin2(x))))ln(xln(sin2(x)))(ln(ln(xln(sin2(x)))))2f'(x) = - \dfrac{\left( \ln\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right) \right)'}{\left( \ln\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right) \right)^2} = - \dfrac{\dfrac{\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right)'}{\ln\left( x\ln\left( \sin^2(x) \right) \right)}}{\left( \ln\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right) \right)^2}
Soit :
f(x)=(ln(xln(sin2(x))))ln(xln(sin2(x)))(ln(ln(xln(sin2(x)))))2f'(x) = \dfrac{\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right)'}{\ln\left( x\ln\left( \sin^2(x) \right) \right) \left( \ln\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right) \right)^2}
Soit encore :
f(x)=(xln(sin2(x)))xln(sin2(x))ln(xln(sin2(x)))(ln(ln(xln(sin2(x)))))2f'(x) = \dfrac{\dfrac{\left( x\ln\left( \sin^2(x) \right) \right)'}{x\ln\left( \sin^2(x) \right)}}{\ln\left( x\ln\left( \sin^2(x) \right) \right) \left( \ln\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right) \right)^2}
Qui va s'écrire comme :
f(x)=(xln(sin2(x)))xln(sin2(x))ln(xln(sin2(x)))(ln(ln(xln(sin2(x)))))2f'(x) = \dfrac{\left( x\ln\left( \sin^2(x) \right) \right)'}{x\ln\left( \sin^2(x) \right)\ln\left( x\ln\left( \sin^2(x) \right) \right) \left( \ln\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right) \right)^2}
Avec :
(xln(sin2(x)))=ln(sin2(x))+x(sin2(x))sin2(x)=ln(sin2(x))+x2cos(x)sin(x)sin2(x)\left( x\ln\left( \sin^2(x) \right) \right)' = \ln\left( \sin^2(x) \right) + x\dfrac{(\sin^2(x))'}{\sin^2(x)} = \ln\left( \sin^2(x) \right) + x\dfrac{2 \cos(x)\sin(x)}{\sin^2(x)}
Soit :
(xln(sin2(x)))=ln(sin2(x))+2xcos(x)sin(x)=2ln(sin(x))+2xcotan(x)\left( x\ln\left( \sin^2(x) \right) \right)' = \ln\left( \sin^2(x) \right) + 2x\dfrac{\cos(x)}{\sin(x)} = 2\ln\left( \sin(x) \right) + 2x \, \mathrm{cotan}(x)
Donc :
(xln(sin2(x)))=2(ln(sin(x))+xcotan(x))\left( x\ln\left( \sin^2(x) \right) \right)' = 2 \left(\ln\left( \sin(x) \right) + x \, \mathrm{cotan}(x) \right)
D'où :
f(x)=2(ln(sin(x))+xcotan(x))xln(sin2(x))ln(xln(sin2(x)))(ln(ln(xln(sin2(x)))))2f'(x) = \dfrac{2 \left(\ln\left( \sin(x) \right) + x \, \mathrm{cotan}(x) \right)}{x\ln\left( \sin^2(x) \right)\ln\left( x\ln\left( \sin^2(x) \right) \right) \left( \ln\left( \ln\left( x\ln\left( \sin^2(x) \right) \right) \right) \right)^2}
Soit encore :
f(x)=2(ln(sin(x))+xcotan(x))2xln(sin(x))ln(2xln(sin(x)))(ln(ln(2xln(sin(x)))))2f'(x) = \dfrac{2 \left(\ln\left( \sin(x) \right) + x \, \mathrm{cotan}(x) \right)}{2x\ln\left( \sin(x) \right)\ln\left( 2x\ln\left( \sin(x) \right) \right) \left( \ln\left( \ln\left( 2x\ln\left( \sin(x) \right) \right) \right) \right)^2}
Finalement, en simplifiant par 22, on trouve que :
f(x)=ln(sin(x))+xcotan(x)xln(sin(x))ln(2xln(sin(x)))(ln(ln(2xln(sin(x)))))2{\color{red}{\boxed{f'(x) = \dfrac{\ln\left( \sin(x) \right) + x \, \mathrm{cotan}(x) }{x\ln\left( \sin(x) \right)\ln\left( 2x\ln\left( \sin(x) \right) \right) \left( \ln\left( \ln\left( 2x\ln\left( \sin(x) \right) \right) \right) \right)^2}}}}
On a alors :
f(x)=dfdx(x)f'(x) = \dfrac{df}{dx}(x)
En faisant usage de l'écriture de LeibnizLeibniz, on peut donc écrire que :
df(x)=f(x)dxdf(x) = f'(x) \, dx
Ainsi, la différentielle de ff est donnée par l'expression suivante :
df(x)=ln(sin(x))+xcotan(x)xln(sin(x))ln(2xln(sin(x)))(ln(ln(2xln(sin(x)))))2dx{\color{red}{\boxed{df(x) = \dfrac{\ln\left( \sin(x) \right) + x \, \mathrm{cotan}(x) }{x\ln\left( \sin(x) \right)\ln\left( 2x\ln\left( \sin(x) \right) \right) \left( \ln\left( \ln\left( 2x\ln\left( \sin(x) \right) \right) \right) \right)^2} \, dx}}}
Question 2

Soit x[0;1]f(x)=xeexexx \in [0\,;\,1] \longmapsto f(x) = \dfrac{x}{e^{e^{xe^x}}}.

Correction
On a :
f(x)=(xeexex)=xeexexx(eexex)(eexex)2=eexexx(exex)eexex(eexex)2f'(x) = \left(\dfrac{x}{e^{e^{xe^x}}} \right)' = \dfrac{x'e^{e^{xe^x}} - x \left( e^{e^{xe^x}} \right)'}{\left( e^{e^{xe^x}}\right)^2} = \dfrac{e^{e^{xe^x}} - x \left( e^{xe^x} \right)'e^{e^{xe^x}}}{\left( e^{e^{xe^x}}\right)^2}
En simplifiant par le terme eexexe^{e^{xe^x}} non nul sur l'intervalle [0;1][0\,;\,1], on obtient :
f(x)=1x(exex)eexexf'(x) = \dfrac{1 - x \left( e^{xe^x} \right)'}{e^{e^{xe^x}}}
Ce qui nous donne :
f(x)=1x(xex)exexeexexf'(x) = \dfrac{1 - x \left( xe^x \right)'e^{xe^x}}{e^{e^{xe^x}}}
Soit :
f(x)=1x(ex+xex)exexeexexf'(x) = \dfrac{1 - x \left( e^x + xe^x\right)e^{xe^x}}{e^{e^{xe^x}}}
Soit encore :
f(x)=1x(1+x)exexexeexexf'(x) = \dfrac{1 - x \left( 1 + x\right)e^x e^{xe^x}}{e^{e^{xe^x}}}
Or, on a exexex=ex+xex=ex(1+ex)e^x e^{xe^x} = e^{x+xe^x} = e^{x(1+e^x)}. On a donc :
f(x)=1x(1+x)ex(1+ex)eexexf'(x) = \dfrac{1 - x \left( 1 + x\right)e^{x(1+e^x)}}{e^{e^{xe^x}}}
Ceci peut également s'écrire comme :
f(x)=eexex(1x(1+x)ex(1+ex))f'(x) = e^{-e^{xe^x}}\left( 1 - x \left( 1 + x\right)e^{x(1+e^x)}\right)
On obtient alors :
f(x)=eexexx(1+x)ex(1+ex)eexexf'(x) = e^{-e^{xe^x}} - x \left( 1 + x\right) e^{x(1+e^x)} e^{-e^{xe^x}}
Finalement, on trouve que :
f(x)=eexexx(1+x)ex(1+ex)exex{\color{red}{\boxed{f'(x) = e^{-e^{xe^x}} - x \left( 1 + x\right) e^{x(1+e^x)-e^{xe^x}} }}}
On a alors :
f(x)=dfdx(x)f'(x) = \dfrac{df}{dx}(x)
En faisant usage de l'écriture de LeibnizLeibniz, on peut donc écrire que :
df(x)=f(x)dxdf(x) = f'(x) \, dx
Ainsi, la différentielle de ff est donnée par l'expression suivante :
df(x)=(eexexx(1+x)ex(1+ex)exex)dx{\color{red}{\boxed{df(x) = \left( e^{-e^{xe^x}} - x \left( 1 + x\right) e^{x(1+e^x)-e^{xe^x}} \right) \, dx}}}
Question 3

Soit xRf(x)=e1+ln(1+ecos(x))x \in \mathbb{R} \longmapsto f(x) = e^{1+\ln\left( 1 + e^{\cos(x)} \right)}.

Correction
On a :
f(x)=(e1+ln(1+ecos(x)))=(1+ln(1+ecos(x)))×e1+ln(1+ecos(x))=(ln(1+ecos(x)))×e1+ln(1+ecos(x))f'(x) = \left(e^{1+\ln\left( 1 + e^{\cos(x)} \right)}\right)' = \left(1+\ln\left( 1 + e^{\cos(x)} \right)\right)' \times e^{1+\ln\left( 1 + e^{\cos(x)} \right)} = \left(\ln\left( 1 + e^{\cos(x)} \right)\right)' \times e^{1+\ln\left( 1 + e^{\cos(x)} \right)}
Soit :
f(x)=(1+ecos(x))1+ecos(x)×e1+ln(1+ecos(x))=(ecos(x))1+ecos(x)×e1+ln(1+ecos(x))f'(x) = \dfrac{\left(1 + e^{\cos(x)}\right)'}{1 + e^{\cos(x)} } \times e^{1+\ln\left( 1 + e^{\cos(x)} \right)} = \dfrac{\left(e^{\cos(x)}\right)'}{1 + e^{\cos(x)} } \times e^{1+\ln\left( 1 + e^{\cos(x)} \right)}
Donc :
f(x)=cos(x)ecos(x)1+ecos(x)×e1+ln(1+ecos(x))f'(x) = \dfrac{\cos'(x)e^{\cos(x)}}{1 + e^{\cos(x)} } \times e^{1+\ln\left( 1 + e^{\cos(x)} \right)}
Ce qui nous donne :
f(x)=sin(x)ecos(x)1+ecos(x)×e1+ln(1+ecos(x))f'(x) = \dfrac{-\sin(x)e^{\cos(x)}}{1 + e^{\cos(x)} } \times e^{1+\ln\left( 1 + e^{\cos(x)} \right)}
Puis, on a :
e1+ln(1+ecos(x))=e1×eln(1+ecos(x))=e×(1+ecos(x))e^{1+\ln\left( 1 + e^{\cos(x)} \right)} = e^1 \times e^{\ln\left( 1 + e^{\cos(x)} \right)} = e \times \left( 1 + e^{\cos(x)} \right)
Donc, on en déduit que :
f(x)=sin(x)ecos(x)1+ecos(x)×e×(1+ecos(x))f'(x) = \dfrac{-\sin(x)e^{\cos(x)}}{1 + e^{\cos(x)} } \times e \times \left( 1 + e^{\cos(x)} \right)
En simplifiant par l'expression non nulle 1+ecos(x)1 + e^{\cos(x)}, on trouve que :
f(x)=sin(x)ecos(x)×e=sin(x)ecos(x)×e1f'(x) = -\sin(x)e^{\cos(x)} \times e = -\sin(x)e^{\cos(x)} \times e^1
Finalement, on trouve que :
f(x)=sin(x)e1+cos(x){\color{red}{\boxed{f'(x) = -\sin(x)e^{1+\cos(x)} }}}
On a alors :
f(x)=dfdx(x)f'(x) = \dfrac{df}{dx}(x)
En faisant usage de l'écriture de LeibnizLeibniz, on peut donc écrire que :
df(x)=f(x)dxdf(x) = f'(x) \, dx
Ainsi, la différentielle de ff est donnée par l'expression suivante :
df(x)=sin(x)e1+cos(x)dx{\color{red}{\boxed{df(x) = -\sin(x)e^{1+\cos(x)} \, dx}}}
Question 4

Soit x[0;1]f(x)=ecos(xln(1+tan(xsin(x))))x \in [0\,;\,1] \longmapsto f(x) = e^{\cos\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right)}.

Correction
On a :
f(x)=(ecos(xln(1+tan((xsin(x)))))=(cos(xln(1+tan(xsin(x)))))×ecos(xln(1+tan(xsin(x)))f'(x) = \left(e^{\cos\left(x^{\ln\left(1+\tan(\left(x^{\sin(x)}\right)\right)}\right)}\right)' = \left(\cos\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right) \right)' \times e^{\cos\left(x^{\ln\left(1+\tan(x^{\sin(x)}\right)}\right)}
Soit :
f(x)=(xln(1+tan(xsin(x))))cos(xln(1+tan(xsin(x))))×ecos(xln(1+tan(xsin(x))))f'(x) = \left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)} \right)' \cos'\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right) \times e^{\cos\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right)}
Soit encore :
f(x)=(eln(xln(1+tan(xsin(x)))))sin(xln(1+tan(xsin(x))))×ecos(xln(1+tan(xsin(x))))f'(x) = -\left(e^{\ln\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)} \right)} \right)' \sin\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right) \times e^{\cos\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right)}
Avec :
(eln(xln(1+tan(xsin(x)))))=(eln(1+tan(xsin(x)))ln(x))\left(e^{\ln\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)} \right)} \right)' = \left(e^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right)} \right)'
On peut donc écrire que :
(eln(xln(1+tan(xsin(x)))))=(ln(1+tan(xsin(x)))ln(x))×eln(1+tan(xsin(x)))ln(x)\left(e^{\ln\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)} \right)} \right)' = \left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln(x) \right)'\times e^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln(x)}
Et on a la dérivée suivante :
(ln(1+tan(xsin(x)))ln(x))=(1+tan(xsin(x)))1+tan(xsin(x))ln(x)+ln(1+tan(xsin(x)))x\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{\left(1+\tan\left(x^{\sin(x)}\right)\right)'}{1+\tan\left(x^{\sin(x)}\right)} \ln(x) + \dfrac{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}{x}
Soit :
(ln(1+tan(xsin(x)))ln(x))=(tan(xsin(x)))1+tan(xsin(x))ln(x)+ln(1+tan(xsin(x)))x\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{\left(\tan\left(x^{\sin(x)}\right)\right)'}{1+\tan\left(x^{\sin(x)}\right)} \ln(x) + \dfrac{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}{x}
Soit encore :
(ln(1+tan(xsin(x)))ln(x))=(xsin(x))cos2(xsin(x))×(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x)))x\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{\left(x^{\sin(x)}\right)'}{\cos^2\left( x^{\sin(x)} \right) \times \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \dfrac{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}{x}
Ceci nous donne donc :
(ln(1+tan(xsin(x)))ln(x))=(eln(xsin(x)))cos2(xsin(x))×(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x)))x\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{\left(e^{\ln\left(x^{\sin(x)}\right)}\right)'}{\cos^2\left( x^{\sin(x)} \right) \times \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \dfrac{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}{x}
Ou encore :
(ln(1+tan(xsin(x)))ln(x))=(esin(x)ln(x))cos2(xsin(x))×(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x)))x\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{\left(e^{\sin(x)\ln(x)}\right)'}{\cos^2\left( x^{\sin(x)} \right) \times \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \dfrac{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}{x}
On en déduit donc que :
(ln(1+tan(xsin(x)))ln(x))=(sin(x)ln(x))esin(x)ln(x)cos2(xsin(x))×(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x)))x\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{\left(\sin(x)\ln(x)\right)'e^{\sin(x)\ln(x)}}{\cos^2\left( x^{\sin(x)} \right) \times \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \dfrac{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}{x}
D'où :
(ln(1+tan(xsin(x)))ln(x))=(cos(x)ln(x)+sin(x)x)esin(x)ln(x)cos2(xsin(x))×(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x)))x\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{\left(\cos(x)\ln(x) + \dfrac{\sin(x)}{x}\right)e^{\sin(x)\ln(x)}}{\cos^2\left( x^{\sin(x)} \right) \times \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \dfrac{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}{x}
Ce qui s'écrit aussi comme :
(ln(1+tan(xsin(x)))ln(x))=(xcos(x)ln(x)x+sin(x)x)esin(x)ln(x)cos2(xsin(x))×(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x)))x\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{\left(\dfrac{x\cos(x)\ln(x)}{x} + \dfrac{\sin(x)}{x}\right)e^{\sin(x)\ln(x)}}{\cos^2\left( x^{\sin(x)} \right) \times \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \dfrac{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}{x}
A savoir :
(ln(1+tan(xsin(x)))ln(x))=(xcos(x)ln(x)+sin(x))esin(x)ln(x)xcos2(xsin(x))(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x)))x\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{\left(x\cos(x)\ln(x) + \sin(x)\right)e^{\sin(x)\ln(x)}}{x\cos^2\left( x^{\sin(x)} \right) \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \dfrac{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}{x}
Ou encore :
(ln(1+tan(xsin(x)))ln(x))=1x((xcos(x)ln(x)+sin(x))esin(x)ln(x)cos2(xsin(x))(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x))))\left( \ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln\left(x \right) \right)' = \dfrac{1}{x} \left(\dfrac{\left(x\cos(x)\ln(x) + \sin(x)\right)e^{\sin(x)\ln(x)}}{\cos^2\left( x^{\sin(x)} \right) \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \ln\left(1+\tan\left(x^{\sin(x)}\right)\right) \right)
Ainsi, on peut donc écrire que :
(eln(xln(1+tan(xsin(x)))))=1x((xcos(x)ln(x)+sin(x))esin(x)ln(x)cos2(xsin(x))(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x))))×eln(1+tan(xsin(x)))ln(x)\begin{array}{rcl} \left(e^{\ln\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)} \right)} \right)' & = & \dfrac{1}{x} \left(\dfrac{\left(x\cos(x)\ln(x) + \sin(x)\right)e^{\sin(x)\ln(x)}}{\cos^2\left( x^{\sin(x)} \right) \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \ln\left(1+\tan\left(x^{\sin(x)}\right)\right) \right) \\ & \times & e^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln(x)} \end{array}
Et on obtient alors :
f(x)=1x((xcos(x)ln(x)+sin(x))esin(x)ln(x)cos2(xsin(x))(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x))))×eln(1+tan(xsin(x)))ln(x)sin(xln(1+tan(xsin(x))))ecos(xln(1+tan(xsin(x))))\begin{array}{rcl} f'(x) & = & - \dfrac{1}{x} \left(\dfrac{\left(x\cos(x)\ln(x) + \sin(x)\right)e^{\sin(x)\ln(x)}}{\cos^2\left( x^{\sin(x)} \right) \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \ln\left(1+\tan\left(x^{\sin(x)}\right)\right) \right) \\ & \times & e^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln(x)} \sin\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right) e^{\cos\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right)} \end{array}
Finalement, en regroupant les exponentielles, on trouve que :
f(x)=1x((xcos(x)ln(x)+sin(x))esin(x)ln(x)cos2(xsin(x))(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x))))×sin(xln(1+tan(xsin(x))))eln(1+tan(xsin(x)))ln(x)+cos(xln(1+tan(xsin(x)))){\color{red}{\boxed{ \begin{array}{rcl} f'(x) & = & \dfrac{1}{x} \left(\dfrac{\left(x\cos(x)\ln(x) + \sin(x)\right)e^{\sin(x)\ln(x)}}{\cos^2\left( x^{\sin(x)} \right) \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \ln\left(1+\tan\left(x^{\sin(x)}\right)\right) \right) \\ & & \\ & \times & \sin\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right) \, e^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln(x) + \cos\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right)} \\ \end{array} }}}
On a alors :
f(x)=dfdx(x)f'(x) = \dfrac{df}{dx}(x)
En faisant usage de l'écriture de LeibnizLeibniz, on peut donc écrire que :
df(x)=f(x)dxdf(x) = f'(x) \, dx
Ainsi, la différentielle de ff est donnée par l'expression suivante :
df(x)=1x((xcos(x)ln(x)+sin(x))esin(x)ln(x)cos2(xsin(x))(1+tan(xsin(x)))ln(x)+ln(1+tan(xsin(x))))×sin(xln(1+tan(xsin(x))))eln(1+tan(xsin(x)))ln(x)+cos(xln(1+tan(xsin(x))))dx{\color{red}{\boxed{\begin{array}{rcl} df(x) & = & \dfrac{1}{x} \left(\dfrac{\left(x\cos(x)\ln(x) + \sin(x)\right)e^{\sin(x)\ln(x)}}{\cos^2\left( x^{\sin(x)} \right) \left(1+\tan\left(x^{\sin(x)}\right)\right)} \ln(x) + \ln\left(1+\tan\left(x^{\sin(x)}\right)\right) \right) \\ & & \\ & \times & \sin\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right) \, e^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)\ln(x) + \cos\left(x^{\ln\left(1+\tan\left(x^{\sin(x)}\right)\right)}\right)} \, dx \\ \end{array} }}}