Qui aura 20 en maths ?

💯 Teste ton niveau de maths et tente de gagner un des lots !S'inscrire au jeu  

Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Savoir lire un cosinus et un sinus sur un cercle trigonométrique - Exercice 2

5 min
15
Question 1

{cos(θ)=12sin(θ)=32\left\{\begin{array}{c} {\cos \left(\theta \right)=\frac{1 }{2} } \\ {\sin \left(\theta \right)=-\frac{\sqrt{3} }{2} } \end{array}\right.

Correction
En nous aidant du cercle trigonométrique établi ci-dessous, on a alors :
θ=π3\theta=-\frac{\pi}{3}
Question 2

{cos(θ)=0sin(θ)=1\left\{\begin{array}{c} {\cos \left(\theta \right)=0} \\ {\sin \left(\theta \right)=1 } \end{array}\right.

Correction
En nous aidant du cercle trigonométrique établi ci-dessous, on a alors :
θ=π2\theta=\frac{\pi}{2}
Question 3

{cos(θ)=22sin(θ)=22\left\{\begin{array}{c} {\cos \left(\theta \right)=-\frac{\sqrt{2} }{2} } \\ {\sin \left(\theta \right)=-\frac{\sqrt{2} }{2} } \end{array}\right.

Correction
En nous aidant du cercle trigonométrique établi ci-dessous, on a alors :
θ=3π4\theta=-\frac{3\pi}{4}
Question 4

{cos(θ)=12sin(θ)=32\left\{\begin{array}{c} {\cos \left(\theta \right)=\frac{1}{2} } \\ {\sin \left(\theta \right)=\frac{\sqrt{3} }{2} } \end{array}\right.

Correction
En nous aidant du cercle trigonométrique établi ci-dessous, on a alors :
θ=π3\theta=\frac{\pi}{3}