Se connecter
S'inscrire
Fiches gratuites
Formules
Blog
Qui aura 20 en maths ?
💯 Teste ton niveau de maths et tente de gagner un des lots !
S'inscrire au jeu
→
Nouveau
🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !
Accéder aux fiches
→
Se connecter
Tous les niveaux
>
Enseignement de spécialité
>
Produit scalaire
Produit scalaire : définition avec le cosinus (définition géométrique) - Exercice 1
5 min
15
Question 1
On donne
∥
u
→
∥
=
10
\left\| \overrightarrow{u} \right\|=10
∥
∥
u
∥
∥
=
10
et
∥
v
→
∥
=
6
\left\| \overrightarrow{v} \right\|=6
∥
∥
v
∥
∥
=
6
et
(
u
→
,
v
→
)
=
π
3
\left(\overrightarrow{u} ,\overrightarrow{v} \right)=\frac{\pi}{3}
(
u
,
v
)
=
3
π
. Calculer
u
→
⋅
v
→
\overrightarrow{u} \cdot \overrightarrow{v}
u
⋅
v
Correction
Le produit scalaire de deux vecteurs
u
→
\overrightarrow{u}
u
et
v
→
\overrightarrow{v}
v
non nuls est défini par :
u
→
⋅
v
→
=
∥
u
→
∥
×
∥
v
→
∥
×
cos
(
u
→
,
v
→
)
\overrightarrow{u} \cdot \overrightarrow{v} =\left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\| \times \cos \left(\overrightarrow{u} ,\overrightarrow{v} \right)
u
⋅
v
=
∥
∥
u
∥
∥
×
∥
∥
v
∥
∥
×
cos
(
u
,
v
)
u
→
⋅
v
→
=
∥
u
→
∥
×
∥
v
→
∥
×
cos
(
u
→
,
v
→
)
\overrightarrow{u} \cdot \overrightarrow{v} =\left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\| \times \cos \left(\overrightarrow{u} ,\overrightarrow{v} \right)
u
⋅
v
=
∥
∥
u
∥
∥
×
∥
∥
v
∥
∥
×
cos
(
u
,
v
)
u
→
⋅
v
→
=
10
×
6
×
cos
(
π
3
)
\overrightarrow{u} \cdot \overrightarrow{v} =10\times6 \times \cos \left(\frac{\pi}{3} \right)
u
⋅
v
=
10
×
6
×
cos
(
3
π
)
.
\;\;
Or
cos
(
π
3
)
=
1
2
\cos \left(\frac{\pi}{3} \right)=\frac{1}{2}
cos
(
3
π
)
=
2
1
, ce qui nous donne :
u
→
⋅
v
→
=
10
×
6
×
1
2
\overrightarrow{u} \cdot \overrightarrow{v} =10\times6 \times \frac{1}{2}
u
⋅
v
=
10
×
6
×
2
1
Ainsi :
u
→
⋅
v
→
=
30
\overrightarrow{u} \cdot \overrightarrow{v} =30
u
⋅
v
=
30
Question 2
On donne
∥
u
→
∥
=
5
\left\| \overrightarrow{u} \right\|=5
∥
∥
u
∥
∥
=
5
et
∥
v
→
∥
=
4
\left\| \overrightarrow{v} \right\|=4
∥
∥
v
∥
∥
=
4
et
(
u
→
,
v
→
)
=
12
0
∘
\left(\overrightarrow{u} ,\overrightarrow{v} \right)=120^{\circ }
(
u
,
v
)
=
12
0
∘
. Calculer
u
→
⋅
v
→
\overrightarrow{u} \cdot \overrightarrow{v}
u
⋅
v
Correction
Le produit scalaire de deux vecteurs
u
→
\overrightarrow{u}
u
et
v
→
\overrightarrow{v}
v
non nuls est défini par :
u
→
⋅
v
→
=
∥
u
→
∥
×
∥
v
→
∥
×
cos
(
u
→
,
v
→
)
\overrightarrow{u} \cdot \overrightarrow{v} =\left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\| \times \cos \left(\overrightarrow{u} ,\overrightarrow{v} \right)
u
⋅
v
=
∥
∥
u
∥
∥
×
∥
∥
v
∥
∥
×
cos
(
u
,
v
)
u
→
⋅
v
→
=
∥
u
→
∥
×
∥
v
→
∥
×
cos
(
u
→
,
v
→
)
\overrightarrow{u} \cdot \overrightarrow{v} =\left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\| \times \cos \left(\overrightarrow{u} ,\overrightarrow{v} \right)
u
⋅
v
=
∥
∥
u
∥
∥
×
∥
∥
v
∥
∥
×
cos
(
u
,
v
)
u
→
⋅
v
→
=
5
×
4
×
cos
(
12
0
∘
)
\overrightarrow{u} \cdot \overrightarrow{v} =5\times 4\times \cos \left(120^{\circ }\right)
u
⋅
v
=
5
×
4
×
cos
(
12
0
∘
)
\;\;
Or
cos
(
12
0
∘
)
=
−
1
2
\cos \left(120^{\circ } \right)=-\frac{1 }{2}
cos
(
12
0
∘
)
=
−
2
1
, ce qui nous donne :
u
→
⋅
v
→
=
5
×
4
×
(
−
1
2
)
\overrightarrow{u} \cdot \overrightarrow{v} =5\times 4\times \left(-\frac{1}{2}\right)
u
⋅
v
=
5
×
4
×
(
−
2
1
)
Ainsi :
u
→
⋅
v
→
=
−
10
\overrightarrow{u} \cdot \overrightarrow{v} =-10
u
⋅
v
=
−
10
Question 3
On donne
∥
u
→
∥
=
5
\left\| \overrightarrow{u} \right\|=5
∥
∥
u
∥
∥
=
5
et
∥
v
→
∥
=
4
\left\| \overrightarrow{v} \right\|=4
∥
∥
v
∥
∥
=
4
et
(
u
→
,
v
→
)
=
3
π
4
\left(\overrightarrow{u} ,\overrightarrow{v} \right)=\frac{3\pi}{4}
(
u
,
v
)
=
4
3
π
. Calculer
u
→
⋅
v
→
\overrightarrow{u} \cdot \overrightarrow{v}
u
⋅
v
Correction
Le produit scalaire de deux vecteurs
u
→
\overrightarrow{u}
u
et
v
→
\overrightarrow{v}
v
non nuls est défini par :
u
→
⋅
v
→
=
∥
u
→
∥
×
∥
v
→
∥
×
cos
(
u
→
,
v
→
)
\overrightarrow{u} \cdot \overrightarrow{v} =\left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\| \times \cos \left(\overrightarrow{u} ,\overrightarrow{v} \right)
u
⋅
v
=
∥
∥
u
∥
∥
×
∥
∥
v
∥
∥
×
cos
(
u
,
v
)
u
→
⋅
v
→
=
∥
u
→
∥
×
∥
v
→
∥
×
cos
(
u
→
,
v
→
)
\overrightarrow{u} \cdot \overrightarrow{v} =\left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\| \times \cos \left(\overrightarrow{u} ,\overrightarrow{v} \right)
u
⋅
v
=
∥
∥
u
∥
∥
×
∥
∥
v
∥
∥
×
cos
(
u
,
v
)
u
→
⋅
v
→
=
5
×
4
×
cos
(
3
π
4
)
\overrightarrow{u} \cdot \overrightarrow{v} =5\times 4\times \cos \left(\frac{3\pi}{4} \right)
u
⋅
v
=
5
×
4
×
cos
(
4
3
π
)
\;\;
Or
cos
(
3
π
4
)
=
−
2
2
\cos \left(\frac{3\pi}{4} \right)=\frac{-\sqrt{2} }{2}
cos
(
4
3
π
)
=
2
−
2
, ce qui nous donne :
u
→
⋅
v
→
=
5
×
4
×
(
−
2
2
)
\overrightarrow{u} \cdot \overrightarrow{v} =5\times 4\times \left(\frac{-\sqrt{2} }{2}\right)
u
⋅
v
=
5
×
4
×
(
2
−
2
)
Ainsi :
u
→
⋅
v
→
=
−
10
×
2
\overrightarrow{u} \cdot \overrightarrow{v} =-10\times \sqrt{2}
u
⋅
v
=
−
10
×
2
Question 4
On donne
∥
u
→
∥
=
2
\left\| \overrightarrow{u} \right\|=2
∥
∥
u
∥
∥
=
2
et
∥
v
→
∥
=
7
\left\| \overrightarrow{v} \right\|=7
∥
∥
v
∥
∥
=
7
et
(
u
→
,
v
→
)
=
π
6
\left(\overrightarrow{u} ,\overrightarrow{v} \right)=\frac{\pi}{6}
(
u
,
v
)
=
6
π
. Calculer
u
→
⋅
v
→
\overrightarrow{u} \cdot \overrightarrow{v}
u
⋅
v
Correction
Le produit scalaire de deux vecteurs
u
→
\overrightarrow{u}
u
et
v
→
\overrightarrow{v}
v
non nuls est défini par :
u
→
⋅
v
→
=
∥
u
→
∥
×
∥
v
→
∥
×
cos
(
u
→
,
v
→
)
\overrightarrow{u} \cdot \overrightarrow{v} =\left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\| \times \cos \left(\overrightarrow{u} ,\overrightarrow{v} \right)
u
⋅
v
=
∥
∥
u
∥
∥
×
∥
∥
v
∥
∥
×
cos
(
u
,
v
)
u
→
⋅
v
→
=
∥
u
→
∥
×
∥
v
→
∥
×
cos
(
u
→
,
v
→
)
\overrightarrow{u} \cdot \overrightarrow{v} =\left\| \overrightarrow{u} \right\| \times \left\| \overrightarrow{v} \right\| \times \cos \left(\overrightarrow{u} ,\overrightarrow{v} \right)
u
⋅
v
=
∥
∥
u
∥
∥
×
∥
∥
v
∥
∥
×
cos
(
u
,
v
)
u
→
⋅
v
→
=
2
×
7
×
cos
(
π
6
)
\overrightarrow{u} \cdot \overrightarrow{v} =2\times 7\times \cos \left(\frac{\pi}{6} \right)
u
⋅
v
=
2
×
7
×
cos
(
6
π
)
\;\;
Or
cos
(
π
6
)
=
3
2
\cos \left(\frac{\pi}{6} \right)=\frac{\sqrt{3} }{2}
cos
(
6
π
)
=
2
3
, ce qui nous donne :
u
→
⋅
v
→
=
2
×
7
×
3
2
\overrightarrow{u} \cdot \overrightarrow{v} =2\times 7\times \frac{\sqrt{3} }{2}
u
⋅
v
=
2
×
7
×
2
3
Ainsi :
u
→
⋅
v
→
=
7
×
3
\overrightarrow{u} \cdot \overrightarrow{v} =7\times \sqrt{3}
u
⋅
v
=
7
×
3