Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Fonctions polynômes de degré 2

Déterminer le sommet d'une fonction du second degré à partir de sa forme factorisée - Exercice 1

10 min
25
Question 1
Soit ff la fonction définie sur R\mathbb{R} par f(x)=2(x4)(x6)f\left(x\right)=2\left(x-4\right)\left(x-6\right). On note C\mathscr{C} sa représentation graphique dans un repère orthonormé.

Déterminer les points d'intersection de la courbe C\mathscr{C} et de l'axe des abscisses.

Correction
Pour déterminer l’intersection de la courbe de ff avec l’axe des abscisses, il suffit de résoudre l’équation f(x)=0f\left(x\right)=0 .
Ainsi :
2(x4)(x6)=02\left(x-4\right)\left(x-6\right)=0 . Il s'agit ici d'une équation produit nul.
Il faut donc résoudre : x4=0x-4=0 ou\text{\red{ou}} x6=0x-6=0
D’une part :\text{\blue{D'une part :}}
x4=0x-4=0
x=4x=4
D’autre part :\text{\blue{D'autre part :}}
x6=0x-6=0
x=6x=6
Les points cherchés ont pour coordonnées (4;0)\left(4;0\right) et (6;0)\left(6;0\right)
Question 2

Déterminer une équation de l'axe de symétrie de la parabole C\mathscr{C} .

Correction
  • La représentation graphique de la fonction xa(xx1)(xx2)x\mapsto a\left(x-x_1\right)\left(x-x_2\right)aa, x1x_1 et x2x_2 sont des constantes réelles avec a0a\ne 0 est une parabole ayant la droite x=x1+x22x=\frac{x_1+x_2}{2} comme axe de symétrie.
Nous avons f(x)=2(x4)(x6)f\left(x\right)=2\left(x-4\right)\left(x-6\right) . D'après le rappel, nous pouvons identifier que x1=4x_1=4 et x2=6x_2=6 .
L'axe de symétrie admet comme équation x=x1+x22x=\frac{x_1+x_2}{2}, il vient alors :
x=4+62x=\frac{4+6}{2}
x=102x=\frac{10}{2}
x=5x=5

Question 3

Déterminer les coordonnées du sommet SS de C\mathscr{C} ou encore déterminer les coordonnées de son extremum.

Correction
Déterminer les coordonnées du sommet SS de C\mathscr{C} ou encore déterminer les coordonnées de son extremum. Il s'agit de deux manières différentes de poser la question.
Le sommet SS de la parabole C\mathscr{C} appartient à l'axe de symétrie donc son abscisse vaut 55 et son ordonnée vaut f(5)=2×(54)×(56)f\left(5\right)=2\times\left(5-4\right)\times\left(5-6\right)
f(5)=2×1×(1)f\left(5\right)=2\times1\times\left(-1\right)
f(5)=2f\left(5\right)=-2

Le sommet de la parabole SS est donc le point de coordonnées (5;2)\left(5;-2\right)