Les nombres complexes

Calculs algébriques - Exercice 3

7 min
10
Question 1
On considère les deux nombres complexes définis par z1=1+iz_{1} =1+i et z2=2+3iz_{2} =-2+3i.
Calculez et donnez les résultats sous forme algébrique

z12z2z_{1} -2z_{2}

Correction
z12z2=1+i2(2+3i)z_{1} -2z_{2} =1+i-2\left(-2+3i\right) équivaut successivement à :
z12z2=1+i+46iz_{1} -2z_{2} =1+i+4-6i
Ainsi :
z12z2=55iz_{1} -2z_{2} =5-5i
Question 2

z1z2z_{1} z_{2}

Correction
z1z2=(1+i)(2+3i)z_{1} z_{2} =\left(1+i\right)\left(-2+3i\right) équivaut successivement à :
z1z2=2+3i2i+3i2z_{1} z_{2} =-2+3i-2i+3i^{2}
z1z2=2+3i2i3z_{1} z_{2} =-2+3i-2i-3
Ainsi :
z1z2=5+iz_{1} z_{2} =-5+i

Question 3

(z1)2+2(z2)2\left(z_{1} \right)^{2} +2\left(z_{2} \right)^{2}

Correction
(z1)2+2(z2)2=(1+i)2+2(2+3i)2\left(z_{1} \right)^{2} +2\left(z_{2} \right)^{2} =\left(1+i\right)^{2} +2\left(-2+3i\right)^{2} équivaut successivement à :
(z1)2+2(z2)2=1+2i+i2+2(412i+9i2)\left(z_{1} \right)^{2} +2\left(z_{2} \right)^{2} =1+2i+i^{2} +2\left(4-12i+9i^{2} \right)
(z1)2+2(z2)2=1+2i1+2(412i9)\left(z_{1} \right)^{2} +2\left(z_{2} \right)^{2} =1+2i-1+2\left(4-12i-9\right)
(z1)2+2(z2)2=2i+2(12i5)\left(z_{1} \right)^{2} +2\left(z_{2} \right)^{2} =2i+2\left(-12i-5\right)
(z1)2+2(z2)2=2i24i10\left(z_{1} \right)^{2} +2\left(z_{2} \right)^{2} =2i-24i-10
Ainsi :
(z1)2+2(z2)2=1022i\left(z_{1} \right)^{2} +2\left(z_{2} \right)^{2} =-10-22i
Question 4

z1+z2z2\frac{z_{1} +z_{2} }{z_{2} }

Correction
z1+z2z2=1+i2+3i2+3i\frac{z_{1} +z_{2} }{z_{2} } =\frac{1+i-2+3i}{-2+3i}
z1+z2z2=1+4i2+3i\frac{z_{1} +z_{2} }{z_{2} } =\frac{-1+4i}{-2+3i}
z1+z2z2=(1+4i)(23i)(2+3i)(23i)\frac{z_{1} +z_{2} }{z_{2} } =\frac{\left(-1+4i\right)\left(-2-3i\right)}{\left(-2+3i\right)\left(-2-3i\right)}
z1+z2z2=2+3i8i12i222+32\frac{z_{1} +z_{2} }{z_{2} } =\frac{2+3i-8i-12i^{2} }{2^{2} +3^{2} }
z1+z2z2=2+3i8i+1222+32\frac{z_{1} +z_{2} }{z_{2} } =\frac{2+3i-8i+12}{2^{2} +3^{2} }
Ainsi :
z1+z2z2=1413513i\frac{z_{1} +z_{2} }{z_{2} } =\frac{14}{13} -\frac{5}{13} i

Question 5

z12z2z1+z2\frac{z_{1} -2z_{2} }{z_{1} +z_{2} }

Correction
z12z2z1+z2=1+i2(2+3i)1+i2+3i\frac{z_{1} -2z_{2} }{z_{1} +z_{2} } =\frac{1+i-2\left(-2+3i\right)}{1+i-2+3i}
z12z2z1+z2=1+i+46i1+4i\frac{z_{1} -2z_{2} }{z_{1} +z_{2} } =\frac{1+i+4-6i}{-1+4i}
z12z2z1+z2=55i1+4i\frac{z_{1} -2z_{2} }{z_{1} +z_{2} } =\frac{5-5i}{-1+4i}
z12z2z1+z2=(55i)(14i)(1+4i)(14i)\frac{z_{1} -2z_{2} }{z_{1} +z_{2} } =\frac{\left(5-5i\right)\left(-1-4i\right)}{\left(-1+4i\right)\left(-1-4i\right)}
z12z2z1+z2=520i+5i+20i212+42\frac{z_{1} -2z_{2} }{z_{1} +z_{2} } =\frac{-5-20i+5i+20i^{2} }{1^{2} +4^{2} }
z12z2z1+z2=520i+5i2012+42\frac{z_{1} -2z_{2} }{z_{1} +z_{2} } =\frac{-5-20i+5i-20}{1^{2} +4^{2} }
Ainsi :
z12z2z1+z2=25171517i\frac{z_{1} -2z_{2} }{z_{1} +z_{2} } =-\frac{25}{17} -\frac{15}{17} i