Manipulations de sommes et de produits

Sujet 22 - Exercice 1

10 min
25
Question 1

Soit nn un entier naturel. Calculer : S1=(i,j)[[1,n]]2min(i,j) S_1=\sum_{\left(i,j\right)\in {\left[\left[1,n\right]\right]}^2}{{\mathrm{min} \left(i,j\right)\ }}

Correction
S1=(i,j)[[1,n]]2min(i,j) S_1=\sum_{\left(i,j\right)\in {\left[\left[1,n\right]\right]}^2}{{\mathrm{min} \left(i,j\right)\ }} équivaut successivement à :
S1=i=1nj=1nmin(i,j) S_1=\sum^n_{i=1}{\sum^n_{j=1}{{\mathrm{min} \left(i,j\right)\ }}}
S1=i=1n(j=1imin(i,j) +j=i+1nmin(i,j) )S_1=\sum^n_{i=1}{\left(\sum^i_{j=1}{{\mathrm{min} \left(i,j\right)\ }}+\sum^n_{j=i+1}{{\mathrm{min} \left(i,j\right)\ }}\right)}
S1=i=1n(j=1ij+j=i+1ni)S_1=\sum^n_{i=1}{\left(\sum^i_{j=1}{j}+\sum^n_{j=i+1}{i}\right)}
    Soit α\alpha un réel . Pour tout entier naturel nn, on a :
  •   \;k=1nα=nα\sum^n_{k=1}{\alpha=n\alpha}
  •   \;k=1nk=n(n+1)2\sum^n_{k=1}{k=\frac{n\left(n+1\right)}{2}}

S1=i=1n(i(i+1)2+(n(i+1)+1)×i)S_1=\sum^n_{i=1}{\left(\frac{i\left(i+1\right)}{2}+\left(n-\left(i+1\right)+1\right)\times i\right)}
S1=i=1n(i(i+1)2+(ni)×i)S_1=\sum^n_{i=1}{\left(\frac{i\left(i+1\right)}{2}+\left(n-i\right)\times i\right)}
S1=i=1n(12i2+12i+nii2)S_1=\sum^n_{i=1}{\left(\frac{1}{2}i^2+\frac{1}{2}i+ni-i^2\right)}
S1=i=1n(12i2+12i+ni)S_1=\sum^n_{i=1}{\left(-\frac{1}{2}i^2+\frac{1}{2}i+ni\right)}
S1=i=1n(12i2+(12+n)i)S_1=\sum^n_{i=1}{\left(-\frac{1}{2}i^2+\left(\frac{1}{2}+n\right)i\right)}
S1=i=1n(12i2)+i=1n((12+n)i)S_1=\sum^n_{i=1}{\left(-\frac{1}{2}i^2\right)}+\sum^n_{i=1}{\left(\left(\frac{1}{2}+n\right)i\right)}
S1=12i=1n(i2)+(12+n)i=1n(i)S_1=-\frac{1}{2}\sum^n_{i=1}{\left(i^2\right)}+\left(\frac{1}{2}+n\right)\sum^n_{i=1}{\left(i\right)}
    Pour tout entier naturel nn, on a :
  •   \;k=1nk=n(n+1)2\sum^n_{k=1}{k=\frac{n\left(n+1\right)}{2}}
  •   \;k=1nk2=n(n+1)(2n+1)6\sum^n_{k=1}{k^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}}
S1=12×n(n+1)(2n+1)6+(12+n)×n(n+1)2S_1=-\frac{1}{2}\times \frac{n\left(n+1\right)\left(2n+1\right)}{6}+\left(\frac{1}{2}+n\right)\times \frac{n\left(n+1\right)}{2}
S1=n(n+1)(2n+1)12+(12+n)n(n+1)2S_1=\frac{-n\left(n+1\right)\left(2n+1\right)}{12}+\frac{\left(\frac{1}{2}+n\right)n\left(n+1\right)}{2}
S1=(n(n+1))((2n+1)12+(12+n)2)S_1=\left(n\left(n+1\right)\right)\left(\frac{-\left(2n+1\right)}{12}+\frac{\left(\frac{1}{2}+n\right)}{2}\right)
S1=(n(n+1))(2n112+3+6n12)S_1=\left(n\left(n+1\right)\right)\left(\frac{-2n-1}{12}+\frac{3+6n}{12}\right)
S1=(n(n+1))(2n1+3+6n12)S_1=\left(n\left(n+1\right)\right)\left(\frac{-2n-1+3+6n}{12}\right)
S1=(n(n+1))(4n+212)S_1=\left(n\left(n+1\right)\right)\left(\frac{4n+2}{12}\right)
Ainsi :
S1=(n(n+1))(2n+16)S_1=\left(n\left(n+1\right)\right)\left(\frac{2n+1}{6}\right)