Géométrie du triangle : Somme des angles d'un triangle
Somme des angles dans un triangle particulier - Exercice 1
8 min
15
On considère le triangle ABC rectangle en A ci-dessous :
Question 1
Calculer la mesure de l'angle B.
Correction
Méthode 1 :
Dans un triangle, la somme des trois angles est égale à 180°.
Dans le triangle ABC on connait la mesure de 2 angles, ( l'angle A et l'angle C). On a donc : A+C=90+31=121° Or dans un triangle, la somme des trois angles est égale à 180°. On peut donc calculer la mesure du troisième angle : B=180−121 B=59° L'angle B mesure 59°. Méthode 2 :
Dans un triangle rectangle, la somme des deux angles aigus est égale à 90°.
Dans le triangle rectangle ABC, les deux angles aigus sont l'angle B et l'angle C.Donc : B+C=90° B=90°−C=90−31 B=59° L'angle B mesure 59°.
Question 2
On considère le triangle IJK rectangle en I ci-dessous :
En utilisant la méthode de votre choix, calculer la mesure de l'angle K.
Correction
Méthode 1 :
Dans un triangle, la somme des trois angles est égale à 180°.
Dans le triangle IJK on connait la mesure de 2 angles, ( l'angle I et l'angle J). On a donc : I+J=90+55=145° Or dans un triangle, la somme des trois angles est égale à 180°. On peut donc calculer la mesure du troisième angle : K=180−145 K=35° L'angle K mesure 35°. Méthode 2 :
Dans un triangle rectangle, la somme des deux angles aigus est égale à 90°.
Dans le triangle rectangle IJK, les deux angles aigus sont l'angle J et l'angle K.Donc : J+K=90° K=90°−J=90−55 K=35° L'angle K mesure 35°.
Question 3
On considère le triangle GHI rectangle en I ci-dessous :
En utilisant la méthode de votre choix, calculer la mesure de l'angle G.
Correction
Méthode 1 :
Dans un triangle, la somme des trois angles est égale à 180°.
Dans le triangle rectangle GHI on connait la mesure de 2 angles, ( l'angle I et l'angle H). On a donc : I+H=90+47=137° Or dans un triangle, la somme des trois angles est égale à 180°. On peut donc calculer la mesure du troisième angle : G=180−137 G=43° L'angle G mesure 43°. Méthode 2 :
Dans un triangle rectangle, la somme des deux angles aigus est égale à 90°.
Dans le triangle rectangle GHI, les deux angles aigus sont l'angle G et l'angle H.Donc : G+H=90° G=90°−H=90−47 G=43° L'angle G mesure 43°.
Question 4
On considère le triangle XYZ rectangle en Y ci-dessous :
En utilisant la méthode de votre choix, calculer la mesure de l'angle X.
Correction
Méthode 1 :
Dans un triangle, la somme des trois angles est égale à 180°.
Dans le triangle rectangle XYZ on connait la mesure de 2 angles, ( l'angle Y et l'angle Z). On a donc : Y+Z=90+32=122° Or dans un triangle, la somme des trois angles est égale à 180°. On peut donc calculer la mesure du troisième angle : X=180−122 X=58° L'angle X mesure 58°. Méthode 2 :
Dans un triangle rectangle, la somme des deux angles aigus est égale à 90°.
Dans le triangle rectangle XYZ, les deux angles aigus sont l'angle X et l'angle Z.Donc : X+Z=90° X=90°−Z=90−32 X=58° L'angle X mesure 58°.