Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Déterminer l'axe de symétrie d'une fonction du second degré à partir de sa forme factorisée - Exercice 1

10 min
25
Question 1
Soit ff la fonction définie sur R\mathbb{R} par f(x)=3(x2)(x5)f\left(x\right)=3\left(x-2\right)\left(x-5\right). On note C\mathscr{C} sa représentation graphique dans un repère orthonormé.

Déterminer les points d'intersection de la courbe C\mathscr{C} et de l'axe des abscisses.

Correction
Pour déterminer l’intersection de la courbe de ff avec l’axe des abscisses, il suffit de résoudre l’équation f(x)=0f\left(x\right)=0 .
Ainsi :
f(x)=3(x2)(x5)f\left(x\right)=3\left(x-2\right)\left(x-5\right) . Il s'agit ici d'une équation produit nul.
Il faut donc résoudre : x2=0x-2=0 ou\text{\red{ou}} x5=0x-5=0
D’une part :\text{\blue{D'une part :}}
x2=0x-2=0
x=2x=2
D’autre part :\text{\blue{D'autre part :}}
x5=0x-5=0
x=5x=5
Les points cherchés ont pour coordonnées (2;0)\left(2;0\right) et (5;0)\left(5;0\right)
Question 2

Déterminer une équation de l'axe de symétrie de la parabole C\mathscr{C} .

Correction
  • La représentation graphique de la fonction xa(xx1)(xx2)x\mapsto a\left(x-x_1\right)\left(x-x_2\right)aa, x1x_1 et x2x_2 sont des constantes réelles avec a0a\ne 0 est une parabole ayant la droite x=x1+x22x=\frac{x_1+x_2}{2} comme axe de symétrie.
Nous avons f(x)=3(x2)(x5)f\left(x\right)=3\left(x-2\right)\left(x-5\right) . D'après le rappel, nous pouvons identifier que x1=2x_1=2 et x2=5x_2=5 .
L'axe de symétrie admet comme équation x=x1+x22x=\frac{x_1+x_2}{2}, il vient alors :
x=2+52x=\frac{2+5}{2}
x=72x=\frac{7}{2}

Question 3

Tracer la parabole C\mathscr{C} et son axe de symétrie .

Correction