Nouveau

🤔 Bloqué sur un exercice ou une notion de cours ? Échange avec un prof sur le tchat !Découvrir  

Droites sécantes et point d'intersection - Exercice 1

5 min
10
Question 1
Les droites (d1)\left(d_{1} \right) et (d2)\left(d_{2} \right) ont respectivement comme équation cartésienne x+6y+1=0-x+6y+1=0 et 2xy12=02x-y-\frac{1}{2} =0.

Les droites (d1)\left(d_{1} \right) et (d2)\left(d_{2} \right) sont-elles sécantes ?

Correction
Deux droites (d1)\left(d_{1} \right) et (d2)\left(d_{2} \right) sont sécantes si leurs vecteurs directeurs respectifs ne sont pas colinéaires.
Soit u1(61)\overrightarrow{u_{1} } \left(\begin{array}{c} {-6} \\ {-1} \end{array}\right) un vecteur de la droite (d1)\left(d_{1} \right).
Soit u2(12)\overrightarrow{u_{2} } \left(\begin{array}{c} {1} \\ {2} \end{array}\right) un vecteur de la droite (d2)\left(d_{2} \right).
Le vecteurs u1\overrightarrow{u_{1} } et u2\overrightarrow{u_{2} } ne sont pas colinéaires car : (6)×2(1)×10\left(-6\right)\times 2-\left(-1\right)\times 1\ne 0.
Les droites (d1)\left(d_{1} \right) et (d2)\left(d_{2} \right) ne sont donc pas parallèles, elles sont donc sécantes.

Signaler une erreur

Aide-nous à améliorer nos contenus en signalant les erreurs ou problèmes que tu penses avoir trouvés.

Connecte-toi ou crée un compte pour signaler une erreur.