Nouveau

🔥 Découvre nos fiches d'exercices gratuites avec corrections en vidéo !Accéder aux fiches  

Fonction exponentielle

Sommes nous à l'aise avec les formules usuelles des exponentielles - Exercice 2

5 min
15
Question 1

Montrer que, pour tout réel xx, on a : e5x×e2x(ex+1)3×e5x1×(e52x+1)2=1\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2}=1

Correction
  • eaeb=ea+be^{a} e^{b} =e^{a+b}
  • eaeb=eab\frac{e^{a} }{e^{b} } =e^{a-b}
  • (ea)b=ea×b\left(e^{a} \right)^{b} =e^{a\times b}
  • ea=1eae^{-a} =\frac{1}{e^{a} }
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=e5x×e2xe(x+1)×3×e5x1×e(52x+1)×2\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =\frac{e^{5x} \times e^{2x} }{e^{\left(-x+1\right)\times 3} \times e^{5x-1} } \times e^{\left(-\frac{5}{2} x+1\right)\times 2} équivaut successivement à :
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=e5x×e2xe3x+3×e5x1×e5x+2\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =\frac{e^{5x} \times e^{2x} }{e^{-3x+3} \times e^{5x-1} } \times e^{-5x+2}
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=e5x+2xe3x+3+5x1×e5x+2\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =\frac{e^{5x+2x} }{e^{-3x+3+5x-1} } \times e^{-5x+2}
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=e7xe2x+2×e5x+2\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =\frac{e^{7x} }{e^{2x+2} } \times e^{-5x+2}
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=e7x(2x+2)×e5x+2\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =e^{7x-\left(2x+2\right)} \times e^{-5x+2}
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=e7x2x2×e5x+2\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =e^{7x-2x-2} \times e^{-5x+2}
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=e5x2×e5x+2\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =e^{5x-2} \times e^{-5x+2}
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=e5x2+(5x+2)\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =e^{5x-2+\left(-5x+2\right)}
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=e0\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =e^{0}

Ainsi :
e5x×e2x(ex+1)3×e5x1×(e52x+1)2=1\frac{e^{5x} \times e^{2x} }{\left(e^{-x+1} \right)^{3} \times e^{5x-1} } \times \left(e^{-\frac{5}{2} x+1} \right)^{2} =1