Nombres complexes : point de vue algébrique

QCM

Exercice 1

Cet exercice est un questionnaire à choix multiples (Q. C. M.) . Pour chacune des questions, une seule des quatre réponses est exacte. Justifier la réponse choisie.
1

La partie imaginaire du nombre complexe z=62iz=6-2i est :
a.\bf{a.} 22                                                                                                           \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} 2i2i

c.\bf{c.} 2i-2i                                                                                                    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; d.\bf{d.} 2-2

Correction
2

La partie réelle du nombre complexe z=13i2+4iz=\frac{1-3i}{2+4i} est :
a.\bf{a.} 12\frac{1}{2}                                                                                                   \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} 34-\frac{3}{4}

c.\bf{c.} 34\frac{3}{4}                                                                                                    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; d.\bf{d.} 12-\frac{1}{2}

Correction
3

Soit zz un nombre complexe différent de 1-1. La partie imaginaire du nombre complexe Z=1z+1Z=\frac{1}{z+1} est :
a.\bf{a.} 11                                                                                                                                             \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} y(x+1)2+y2\frac{y}{\left(x+1\right)^{2} +y^{2} }

c.\bf{c.} y(x+1)2+y2-\frac{y}{\left(x+1\right)^{2} +y^{2} }                                                                                                    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; d.\bf{d.} x+1(x+1)2+y2\frac{x+1}{\left(x+1\right)^{2} +y^{2} }

Correction
4

La forme algébrique de Z=(1i)2(2+i)Z=\left(1-i\right)^{2} \left(2+i\right) est :
a.\bf{a.} 24i2-4i                                                                                                       \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} 2+4i2+4i

c.\bf{c.} 2+4i-2+4i                                                                                                    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; d.\bf{d.} 24i-2-4i

Correction
5

La partie imaginaire du nombre complexe (23i)4\left(2-3i\right)^{4} est :
a.\bf{a.} 119+120i119+120i                                                                                                   \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} 119+120i-119+120i

c.\bf{c.} 119120i119-120i                                                                                                    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; d.\bf{d.} 119120i-119-120i

Correction

Exercice 2

Cet exercice est un questionnaire à choix multiples (Q. C. M.) . Pour chacune des questions, une seule des quatre réponses est exacte. Justifier la réponse choisie.
1

Soit zCz\in \mathbb{C} . La solution de l'équation 6z3z=57i6z-3\overline{z}=5-7i est :
a.\bf{a.} 5379i\frac{5}{3}-\frac{7}{9}i                                                                                                   \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} z=5379iz=-\frac{5}{3}-\frac{7}{9}i

c.\bf{c.} 53+79i\frac{5}{3}+\frac{7}{9}i                                                                                                    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; d.\bf{d.} 53+79i-\frac{5}{3}+\frac{7}{9}i

Correction
2

k=0n(kn)(1)k=\sum _{k=0}^{n}\left(\begin{array}{c} {k} \\ {n} \end{array}\right)\left(-1\right)^{k} =
a.\bf{a.} nn                                                                                                   \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; b.\bf{b.} 11

c.\bf{c.} 00                                                                                                    \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; d.\bf{d.} 1-1

Correction
Connecte-toi pour accéder à tes fiches !

Pour lire cette fiche, connecte-toi à ton compte.
Si tu n'en as pas, inscris-toi et essaie gratuitement pendant 24h.